Classical Conditioning III: Temporal difference learning

PSY/NEU338: Animal learning and decision making: Psychological, computational and neural perspectives

understanding a new concept
recap: animals learn predictions

- Unconditional Stimulus
- Conditional Stimulus
- Unconditional Response (reflex); Conditional Response (reflex)

what makes conditioning Pavlovian?

procedurally: Pavlovian/classical conditioning is a learning situation in which the reinforcer does not depend on the animal’s response

from the animal’s point of view: the conditioned response is unaviodable, like a reflex, not utilitarian or flexible; direct result of a prediction
But... 1) Rescorla’s control condition

But... 2) Kamin’s blocking

contingency is also not enough.. need surprise

P(food | noise+light) ≠ P(food | noise alone)
Rescorla & Wagner (1972)

The idea: error-driven learning

Change in value is proportional to the difference between actual and predicted outcome

\[\Delta V(CS_i) = \eta[R_{US} - \sum_{j \in \text{trial}} V(CS_j)] \]

Two assumptions/hypotheses:
(1) learning is driven by error (formalize notion of surprise)
(2) summations of predictors is linear

what does the theory explain?

<table>
<thead>
<tr>
<th></th>
<th>R-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquisition</td>
<td>✓</td>
</tr>
<tr>
<td>extinction</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>blocking</td>
<td>✓</td>
</tr>
<tr>
<td>overshadowing</td>
<td>✓</td>
</tr>
<tr>
<td>temporal relationships</td>
<td>X</td>
</tr>
<tr>
<td>overexpectation</td>
<td>✓</td>
</tr>
</tbody>
</table>
but: second-order conditioning

phase 1: 🕉️ → 🔥
phase 2: 🔥 → 🕉️
test: 🕉️ ?

what do you think will happen?
what would Rescorla-Wagner learning predict here?

animals learn that a predictor of a predictor is also a predictor!
⇒ not interested solely in predicting immediate reinforcement..

Challenge:

- Can you modify the R-W learning rule to account for second order conditioning?
- Group work:
 - what is the fundamental problem here?
 - ideas how to solve it?
hint: dopamine

- Parkinson’s Disease → Motor control / initiation?
- Drug addiction, gambling, Natural rewards → Reward pathway?
 → Learning?
- Also involved in:
 - Working memory
 - Novel situations
 - ADHD
 - Schizophrenia
 - …

the anhedonia hypothesis (Wise, ’80s)

- Anhedonia = inability to experience positive emotional states derived from obtaining a desired or biologically significant stimulus
- Neuroleptics (dopamine antagonists) cause anhedonia
- Dopamine areas are a target of intra-cranial self stimulation (ICSS)
- Dopamine is important for reward-mediated conditioning
but...

predictable reward

omitted reward

(Schultz et al. '90s)

• behavioral puzzle: second order conditioning
• neural puzzle: dopamine responds to reward predicting stimuli instead of to rewards
• think about it…
understanding the brain: where do we start?!

David Marr (1945-1980) proposed three levels of analysis:

1. the problem (Computational Level)
2. the strategy (Algorithmic Level)
3. how its actually done by networks of neurons (Implementational Level)

lets start over, this time from the top...

The problem: optimal prediction of future reinforcement

\[V_t = E \left[\sum_{i=t+1}^{\infty} r_i \right] \]
want to predict expected sum of future reinforcement

\[V_t = E \left[\sum_{i=t+1}^{\infty} \gamma^{i-t-1} r_i \right] \]
want to predict expected sum of discounted future reinf. (0<\(\gamma<1\))

\[V_t = E \left[\sum_{i=t+1}^{T} r_i \right] \]
want to predict expected sum of future reinforcement in a trial/episode
The problem: optimal prediction of future reinforcement

\[V_t = E [r_{t+1} + r_{t+2} + \ldots + r_T] \]
\[= E[r_{t+1}] + E[r_{t+2} + \ldots + r_T] \]
\[= E[r_{t+1}] + V_{t+1} \]

Think football…
What would be a sensible learning rule here?
How is this different from Rescorla-Wagner?