A Kinetic Model of CHF3/CH4 Combustion

From this site you may download the kinetic model file, the thermodynamic data, and the transport data using the links below.

Reaction Model
Thermodynamic Database
Transport Database

Based on the work

Laminar Burning Velocities of Trifluoromethane-Methane Mixtures: Experiment and Numerical Simulation

Y. Saso,* D. L. Zhu, and C. K. Law

Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, New Jersey 08544-5263, U.S.A.

H. Wang

Department of Mechanical Engineering
University of Delaware
Newark, Delaware 19716-3140, U.S.A.

N. Saito

National Research Institute of Fire and Disaster
14-1 Nakahara 3-chome, Mitaka, Tokyo 181, Japan

ABSTRACT

The laminar burning velocities of trifluoromethane(CHF3)- methane(CH4)-oxygen(O2)-diluent mixtures were determined over extensive fuel concentration ranges using the counterflow flame technique. Numerical simulation was performed by employing a detailed kinetic model compiled on the bases of the GRI-Mech for methane combustion and a recent CHF3 reaction kinetic model. Comparisons between the experimental data and numerical results indicate that while the qualitative experimental trends are well predicted by the model, there exist significant numerical disagreements between model and experiment. Through sensitivity and flux analyses, we identified several rate parameters which are influential to burning velocity predictions, and proposed reasonable adjustments to these parameters either based on new experimental measurements or by considering their associated uncertainties. The effect of CHF3 addition on the reduction of CH4 burning velocities was also experimentally and numerically examined, with emphasis on eliminating the temperature effect. By substituting the inert gas in the unburned CH4-O2-inert mixture with CHF3 while maintaining a constant adiabatic flame temperature, both burning velocities and mass burning rates decrease with an increase in CHF3 substitution, thus demonstrating positively the combined kinetic and transport effects of CHF3 on burning velocity reduction and in flame inhibition.

Combustion and Flame, Vol. 114, pp. 457-468 (1998).

* On leave from the National Research Institute of Fire and Disaster, 14-1 Nakahara 3-chome, Mitaka, Tokyo 181, Japan.