Handout 8: One-Sample Hypothesis Testing

Fox Chapter 1

- Using `qnorm()` to calculate the critical value for the α significance level
- Using `pnorm()` to calculate the p-value for hypothesis testing
- Using `prop.test()` to conduct hypothesis testing with proportions under the Central Limit Theorem
- Using `t.test()` to conduct hypothesis tests under the t-distribution
Hypothesis Testing under the Central Limit Theorem

- When the sample size is sufficiently large, we can test our hypothesis by conducting a \(z \)-test using the standard normal distribution. We conduct a **one-sample** \(z \)-test when we want to test whether the mean of the population (from which we have a random sample) is equal to the hypothesized value.

- The **null hypothesis** for a *two-sided test* takes the form \(H_0 : \mu = \mu_0 \), where \(\mu \) is the population mean and \(\mu_0 \) is its hypothesized value. When we know the direction of the difference between \(\mu \) and \(\mu_0 \), we conduct a *one-sided test*. The **alternative hypothesis** changes from \(H_1 : \mu \neq \mu_0 \) (two-sided) to \(H_1 : \mu > \mu_0 \) or \(H_1 : \mu < \mu_0 \) (one-sided).

- We calculate the critical value for the \(\alpha \) significance level by \(\texttt{qnorm}(1 - \alpha/2) \) for a two-sided test, and \(\texttt{qnorm}(1 - \alpha) \) or \(\texttt{qnorm}(\alpha) \) for a one-sided test, depending on the direction of the prior knowledge.

- We can also calculate the *p*-value using \(2 \times \texttt{pnorm}(abs(z), \text{lower.tail}=\text{FALSE}) \) for a two-sided test and \(\texttt{pnorm}(z) \) or \(\texttt{pnorm}(z, \text{lower.tail}=\text{FALSE}) \) for a one-sided test where \(z \) is the \(z \)-statistic.

Example: Public Opinion and the Iraq War. In 2008, S. S. Gardner published “The Multiple Effects of Casualties on Public Support for War” in the *APSR*. Among other things, Gardner explored the association between gender and support for the war in Iraq. Gardner hypothesized that women were, on average, more likely to believe that invading Iraq was a mistake than they were to support the war. We conduct a one-sample \(z \)-test to test whether women were, on average, more likely to feel that it was a mistake to invade Iraq. The dataset includes the variables *female* (binary variable, coded as 1 if female, 0 if male) and *mistake* (binary variable, coded as 1 if respondent felt it was a mistake to invade Iraq and 0 if the respondent supported the invasion).

```r
> load("iraq.RData")
> ## Calculate the mean of attitude toward the war among women
> mean.women <- mean(iraq$mistake[iraq$female == 1])
> n.women <- nrow(iraq[iraq$female == 1,])
> ## Normal test for mean: one-sample
> p0 <- 0.3 ## Contrived value for the null
> se <- sqrt(p0 * (1 - p0) / n.women)
> ## Calculate z-value
> z <- (mean.women - p0) / se
> ## Calculate p-value for hypothesis test
> 2 * pnorm(abs(z), lower.tail=FALSE) ## Two-sided p-value

[1] 1.105991e-07

> pnorm(z) ## One-sided p-value

[1] 5.529954e-08
```
• Alternatively, the command `prop.test(x, n, p = NULL, alternative = c("two.sided", "less", "greater"), conf.level = 0.95)` may be used to test the null hypothesis that proportions (probabilities of success) in a group or several groups are the same or equal to a given value. The command takes a vector of counts of successes `x` from a vector of counts of trials `n` with a vector of probabilities for success `p`. We specify the alternative hypothesis as two-sided if the null hypothesis is $H_0 : \mu = \mu_0$. For a one-sided test, we specify the alternative hypothesis as greater than or less than the null value according to prior knowledge.

```r
> ## for the two-sided
> prop.test(sum(iraq$mistake[iraq$female == 1]),
+ length(iraq$mistake[iraq$female == 1]), p = 0.3,
+ conf.level = 0.95, alternative = "two.sided")

1-sample proportions test with continuity correction

data: sum(iraq$mistake[iraq$female == 1]) out of length(iraq$mistake[iraq$female == 1]), null probability 0.3
X-squared = 27.4665, df = 1, p-value = 1.598e-07
alternative hypothesis: true p is not equal to 0.3
95 percent confidence interval:
 0.1096093 0.1998553
sample estimates:
 p
 0.1494253

> ## for the one-sided
> prop.test(sum(iraq$mistake[iraq$female == 1]),
+ length(iraq$mistake[iraq$female == 1]), p = 0.3,
+ conf.level = 0.95, alternative = "less")

1-sample proportions test with continuity correction

data: sum(iraq$mistake[iraq$female == 1]) out of length(iraq$mistake[iraq$female == 1]), null probability 0.3
X-squared = 27.4665, df = 1, p-value = 7.992e-08
alternative hypothesis: true p is less than 0.3
95 percent confidence interval:
 0.0000000 0.1913945
sample estimates:
 p
 0.1494253
```

• Setting the argument `correct = TRUE` (default) in the `prop.test()` command improves the approximation of the p-value by adjusting for the discontinuity of the binomial distribution. In other words, setting `correct = FALSE` will give the results identical to those obtained on the previous page.

```r
> ## for the two-sided
> prop.test(sum(iraq$mistake[iraq$female == 1]),
+ length(iraq$mistake[iraq$female == 1]), p = 0.3,
+ conf.level = 0.95, alternative = "two.sided", correct = FALSE)

1-sample proportions test with continuity correction

data: sum(iraq$mistake[iraq$female == 1]) out of length(iraq$mistake[iraq$female == 1]), null probability 0.3
X-squared = 27.4665, df = 1, p-value = 1.598e-07
alternative hypothesis: true p is not equal to 0.3
95 percent confidence interval:
 0.1096093 0.1998553
sample estimates:
 p
 0.1494253
```

```r
> ## for the one-sided
> prop.test(sum(iraq$mistake[iraq$female == 1]),
+ length(iraq$mistake[iraq$female == 1]), p = 0.3,
+ conf.level = 0.95, alternative = "less", correct = FALSE)

1-sample proportions test with continuity correction

data: sum(iraq$mistake[iraq$female == 1]) out of length(iraq$mistake[iraq$female == 1]), null probability 0.3
X-squared = 27.4665, df = 1, p-value = 7.992e-08
alternative hypothesis: true p is less than 0.3
95 percent confidence interval:
 0.0000000 0.1913945
sample estimates:
 p
 0.1494253
```
1-sample proportions test without continuity correction

data: sum(iraq\$mistake[iraq\$female == 1]) out of length(iraq\$mistake[iraq\$female == 1]), p = 0.3, X-squared = 28.179, df = 1, p-value = 1.106e-07 alternative hypothesis: true p is not equal to 0.3 95 percent confidence interval: 0.1112740 0.1977465 sample estimates:
p 0.1494253

> ## for the one-sided
> prop.test(sum(iraq\$mistake[iraq\$female == 1]), + length(iraq\$mistake[iraq\$female == 1]), p = 0.3, + conf.level = 0.95, alternative = "less", correct = FALSE)

1-sample proportions test without continuity correction

data: sum(iraq\$mistake[iraq\$female == 1]) out of length(iraq\$mistake[iraq\$female == 1]), X-squared = 28.179, df = 1, p-value = 5.53e-08 alternative hypothesis: true p is less than 0.3 95 percent confidence interval: 0.0000000 0.1893115 sample estimates:
p 0.1494253

There is overwhelming evidence against the null hypothesis that 30% of women in the population believe entering Iraq was a mistake. That is, were the null hypothesis true, it would be extremely unlikely to observe only 39 of 261 women claim that the Iraq war was a mistake.

Note that for some examples, it is preferable to code the results by hand rather than relying on the automated function. For example, setting the null value to 50% results in a p-value to small to be reported directly by the automated function.

> ## By hand
> p0 <- 0.5
> se <- sqrt(p0 * (1 - p0) / n.women)
> ## Calculate z-value
> z <- (mean.women - p0) / se
> ## Calculate p-value for hypothesis test
> 2 * pnorm(abs(z), lower.tail=FALSE) ## Two-sided p-value

> pnorm(z) ## One-sided p-value

[1] 4.799773e-30

> ## Coding by hand yields exact p-value

> ## Automated
> ## for the two-sided
> prop.test(sum(iraq$mistake[iraq$female == 1]),
+ length(iraq$mistake[iraq$female == 1]), p = 0.5,
+ conf.level = 0.95, alternative = "two.sided", correct = FALSE)

1-sample proportions test without continuity correction

data: sum(iraq$mistake[iraq$female == 1]) out of length(iraq$mistake[iraq$female == 1])
X-squared = 128.3103, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.1112740 0.1977465
sample estimates:
 p
0.1494253

> ## for the one-sided
> prop.test(sum(iraq$mistake[iraq$female == 1]),
+ length(iraq$mistake[iraq$female == 1]), p = 0.5,
+ conf.level = 0.95, alternative = "less", correct = FALSE)

1-sample proportions test without continuity correction

data: sum(iraq$mistake[iraq$female == 1]) out of length(iraq$mistake[iraq$female == 1])
X-squared = 128.3103, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is less than 0.5
95 percent confidence interval:
 0.0000000 0.1893115
sample estimates:
 p
0.1494253

2 Hypothesis Testing under Student’s t-Distribution

- We conduct a one-sample t-test when we want to test whether the mean of the population from which we have a random sample is equal to the hypothesized value. Note that the population distribution is assumed to be normal. In practice, many people use t-test even when the distribution of the data is not known to be normal because this test gives the results more conservative than the test based on the normal approximation.
To conduct a t-test, we can use the `t.test()` function in R. The general syntax for the function is `t.test(x, alternative, mu, conf.level)`, where

- x is the vector of data—we test whether its mean is statistically different from the hypothesized population parameter μ;
- `conf.level` is the test’s level of confidence (defaults to 0.95);
- `alternative` specifies a direction of the test. Options are "two.sided", "less", or "greater" (defaults to `two.sided`). One-sided tests correspond to the situation when we know the direction of the difference (e.g. higher or lower) we expect to observe.

Example: Civil War and GDP Growth Rate. A broad range of literature in International Relations addresses the relationship between civil war and GDP. Scholars have sought to understand whether and how engagement in civil wars effects the country’s economy. The `growth.RData` dataset includes the following:

- `war`: A dichotomous variable, taking a value of 1 if the country was engaged in civil war in the previous year and a value of 0 if not
- `growth.rate`: GDP growth over the last 12 months, in inflation-adjusted terms
- `gdppc`: GDP per capita in constant PPP dollars, $1000’s

We conduct a one-sample t-test to determine whether gdp growth rate is positive among countries that experienced a civil war in the previous year.

```r
> load("growth.RData") ## Load data
> ## Conduct the one-sample t.test
> ## Ho: GDP Growth = 0
> ## two-sided
> ## by hand
> mean.gr <- mean(growth$growth.rate[growth$war == 1])
> se <- sd(growth$growth.rate[growth$war == 1]) / sqrt(length(growth$growth.rate[growth$war == 1]))
> t.score <- mean(growth$growth.rate[growth$war == 1]) / se
> t.score

[1] 1.667144

> df <- length(growth$growth.rate[growth$war == 1]) - 1
> ct <- qt(0.975, df = df) # two-sided critical value
> 2 * pt(t.score, df = df, lower.tail = FALSE) # two-sided p-value

[1] 0.09589996

> c(mean.gr - ct * se, mean.gr + ct * se) # confidence interval

[1] -0.1058243  1.2980304
```
> ## automated function
> t.test(growth$growth.rate[growth$war == 1], alternative="two.sided",
+ mu=0, conf.level=0.95)

 One Sample t-test

data: growth$growth.rate[growth$war == 1]
t = 1.6671, df = 756, p-value = 0.0959
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.1058243 1.2980304
sample estimates:
mean of x
 0.596103

> ## one-sided
> ## by hand
> ct.os <- qt(0.95, df = df, lower.tail = FALSE) # one-sided critical value
> pt(t.score, df = df) # one-sided p-value

[1] 0.95205
> c(mean.gr - ct.os * se, mean.gr + ct.os * se) # confidence interval

[1] 1.18495755 0.00724853

> ## automated function
> t.test(growth$growth.rate[growth$war == 1], alternative="less", mu=0,
+ conf.level=0.95)

 One Sample t-test

data: growth$growth.rate[growth$war == 1]
t = 1.6671, df = 756, p-value = 0.9521
alternative hypothesis: true mean is less than 0
95 percent confidence interval:
 -Inf 1.184958
sample estimates:
mean of x
 0.596103

There is reasonable support for the alternative hypothesis that countries engaged in a civil war do not have zero GDP growth, on average, but no evidence in the directional hypothesis that the growth rate is less than zero. Indeed, the growth rate for countries engaged in civil war is positive, and the 95% confidence interval is entirely positive.
3 Practice Questions

3.1 Casualty Sensitivity and Presidential Support

Above, we examined Gardner’s study on the relationship between gender and public opinion regarding the Iraq war. Alternatively, scholars have argued that public opinion regarding wars is driven more by factors other than gender. In 2005, Gelpi, et. al. published “Success Matters: Casualty Sensitivity and the War in Iraq.” In this study, the authors investigated whether the public was less supportive of the Iraq war when casualty numbers are high. Using the authors’ data, we conduct a hypothesis test on whether Presidential Support was low when total casualties were large. The dataset success.RData includes the variables pres.support (percentage of population that support the President) and casualties (an aggregate measure of casualties from the Iraq War).

1. To begin, calculate the point estimate for Presidential support for the full sample, as well as for a subsetted sample with low casualties (casualties less than 500) and one with high casualties (casualties of 500 or greater). Note that we must first convert Presidential support from percentage points to proportions. Calculate the standard error and plot the 95% confidence intervals.

2. Next, conduct a one-sample two-sided hypothesis test on whether the average level of Presidential support was 50% when casualties were high.

3.2 Insurgency and Indiscriminate Violence

We return to the Chechen data set (chechen.RData) analyzed in Day 1 Practice Exercises. Begin by calculating a variable diffattack indicating the difference in the number of insurgency attacks following and prior to the treatment of indiscriminate Russian fire. Next, conduct the t-test where the null hypothesis is that there is no average difference in attacks among shelled villages between pre-attack and post-attack periods and the alternative hypothesis is that the average attack has increased after shelling. Briefly interpret the results.