next up previous contents index
Next: Batch File Format Up: Formulae Used in Calculations Previous: Formulae Used in Calculations

Subsections


Pre-defined Stress Calculations

  

For the general 3D case:

\begin{displaymath}
\mbox{Stress} = \left( \begin{array}
{ccc}
 Sxx & Sxy & Sxz \\  Sxy & Syy & Syz \\  Sxz & Syz & Szz \\  \end{array} \right) \end{displaymath}

\begin{displaymath}
= - Pressure \left( \begin{array}
{ccc}
 1 & 0 & 0 \\  0 & 1...
 ...{\prime} & Syz^{\prime} & Szz^{\prime} \\  \end{array} \right) \end{displaymath}

Where:

\begin{displaymath}
Sxx^{\prime} = (2*Sxx - Syy - Szz)/3.0 \end{displaymath}

\begin{displaymath}
Syy^{\prime} = (2*Syy - Szz - Sxx)/3.0 \end{displaymath}

\begin{displaymath}
Szz^{\prime} = (2*Szz - Sxx - Syy)/3.0 \end{displaymath}

\begin{displaymath}
Sxy^{\prime} = Sxy \end{displaymath}

\begin{displaymath}
Sxz^{\prime} = Sxz \end{displaymath}

\begin{displaymath}
Syz^{\prime} = Syz \end{displaymath}

Pressure

 

\begin{displaymath}
\mbox{Pressure} = - (Sxx + Syy + Szz)/3.0 \end{displaymath}

Von Mises Stress

 

Von Mises \begin{displaymath}
= \sqrt{1.5S_{ij^{\prime}}S_{ij^{\prime}}} \end{displaymath}

where:

\begin{displaymath}
S_{ij^{\prime}}S_{ij^{\prime}} = Sxx^{\prime^{2}} + Syy^{\pr...
 ... + 2.0(Sxy^{\prime^{2}} + Syz^{\prime^{2}} + Sxz^{\prime^{2}}) \end{displaymath}

Plastic Yield

 

\begin{displaymath}
\mbox{Plastic Yield} = S_{ij^{\prime}}S_{ij^{\prime}} - 2Y^{2}/3.0 \end{displaymath}

Where:

Y = Yield strength

Principal Stresses

 

Principal stresses P1, P2 and P3 are the ordered roots of the equation defined by

\begin{displaymath}
\left\vert \begin{array}
{ccc}
 Sxx - \lambda & Sxy & Sxz \\...
 ... \\  Sxz & Syz & Szz - \lambda \\  \end{array} \right\vert = 0 \end{displaymath}

Such that P1 $\gt$ P2 $\gt$ P3.

Principal Strains

 

For mathematical strains, the principal strains P1, P2 and P3 are the ordered roots of the equation defined by

\begin{displaymath}
\left\vert \begin{array}
{ccc}
 Exx - \lambda & Exy & Exz \\...
 ... \\  Exz & Eyz & Ezz - \lambda \\  \end{array} \right\vert = 0 \end{displaymath}

Such that P1 $\gt$ P2 $\gt$ P3.

Engineering strain is defined as $\gamma $ ij = 2*Eij.

So for engineering strains, the principal strains P1, P2 and P3 are the ordered roots of the equation defined by

\begin{displaymath}
\left\vert \begin{array}
{ccc}
 Exx - \lambda & 0.5*Exy & 0....
 ...*Exz & 0.5*Eyz & Ezz - \lambda \\  \end{array} \right\vert = 0 \end{displaymath}

Such that P1 $\gt$ P2 $\gt$ P3.

It is this second equation that is used by RESULTS CALCULATE P-ESTRAIN

Principal Shears

 

Principal shears Q1, Q2, Q3 and QMAX

These are such that:


Q1 = 0.5 (P1 - P3)
Q2 = 0.5 (P1 - P2)
Q3 = 0.5 (P2 - P3)
QMAX = Q1
= Q3 ...(if absolute value of P1 = 0.0)
= Q2 ...(if absolute value of P3 = 0.0)

Factor of Safety


FS(t) = Fatigue Strength at temperature `t'
UTS(t) = Ultimate Tensile Strength at temperature `t'
P-Mean = Principal stress calculated from mean stress
$ \Vert P-Alt \Vert $ = Absolute value of principal stress calculated from alternating stress

If $ -UTS(t) < P-Mean < (-UTS(t) + FS(t)) $ then: $ FOS = \frac{UTS(t) + P-Mean}{\Vert P-Alt \Vert} $

If $ (-UTS(t)+FS(t)) \leq P-Mean \leq 0 $ then: $ FOS = \frac{FS(t)}{\Vert P-Alt \Vert} $

If $ 0 < P-Mean < UTS(t) $ then: $ FOS = \frac {FS(t) * (UTS(t) - P-Mean)} {(UTS(t) * \Vert P-Alt \Vert)} $

If $ \Vert P-Mean \Vert \geq UTS(t) $ then: FOS = 0


next up previous contents index
Next: Batch File Format Up: Formulae Used in Calculations Previous: Formulae Used in Calculations

Femsys Limited
17th August 1999