AOS 522 / GEO 522

Inverse Methods: Theory and Applications


David M. Medvigy

Course treats inverse problems from both theoretical and applied perspectives. Students learn to develop the necessary theory to pose, interpret, and solve inverse problems, focusing on topics including error characterization, linear and non-linear methods, approximations, Kalman filters, use of prior constraints, and observing system design. Concepts are illustrated with examples from the current literature on the Earth's carbon cycle.

AOS 523

Water in the Atmosphere


Stephan Andreas Fueglistaler

Despite the paramount importance of atmospheric water vapour for climate, our understanding of the processes that regulate its distribution and changes within a changing climate remains incomplete. This course analyses observations and discusses theoretical approaches, both basic concepts and novel ideas, to the problem. Course is for graduate students with a background in atmospheric and/or oceanic sciences, and students are encouraged to provide contributions from their own research experiences that are related to the course topic.

AOS 527 / GEO 527

Atmospheric Radiative Transfer


Venkatachalam Ramaswamy, Yi Ming

The structure and composition of terrestrial atmospheres. The fundamental aspects of electromagnetic radiation, absorption and emission by atmospheric gases, optical extinction by particles, the roles of atmospheric species in the Earth's radiative energy balance, the perturbation of climate due to natural and anthropogenic causes, and satellite observations of climate systems are also studied.

AOS 571

Introduction to Geophysical Fluid Dynamics


Stephen T. Garner, Stephen Matthew Griffies

Physical principles fundamental to the theoretical, observational, and experimental study of the atmosphere and oceans; the equations of motion for rotating fluids; hydrostatic and Boussinesq approximations; circulation theorem; and conservation of potential vorticity; scale analysis, geostrophic wind, thermal wind, quasigeostrophic system; and geophysical boundary layers.

AOS 572

Atmospheric and Oceanic Wave Dynamics


Sonya Allayne Legg

Observational evidence of atmospheric and oceanic waves; laboratory simulation. Surface and internal gravity waves; dispersion characteristics; kinetic energy spectrum; critical layer; forced resonance; and instabilities. Planetary waves: scale analysis; physical description of planetary wave propagation; reflections; normal modes in a closed basin. Large-scale baroclinic and barotropic instabilities, Eady and Charney models for baroclinic instability, and energy transfer.

AOS 573

Physical Oceanography


Rong Zhang

Response of the ocean to transient and steady winds and buoyancy forcing. A hierarchy of models from simple analytical to realistic numerical models is used to study the role of the waves, convection, instabilities, and other physical processes in the circulation of the oceans.

AOS 575

Numerical Prediction of the Atmosphere and Ocean


Robert William Hallberg

Barotropic and multilevel dynamic models; coordinate systems and boundary conditions; finite difference equations and their energetics; spectral methods; water vapor and its condensation processes; orography, cumulus convection, subgrid-scale transfer, and boundary layer processes; meteorological and oceanographic data assimilation; dynamic initialization; verification and predictability; and probabilistic forecasts.

AOS 576 / APC 576

Current Topics in Dynamic Meteorology


Isaac M. Held

An introduction to topics of current interest in the dynamics of large-scale atmospheric flow. Possible topics include wave-mean flow interaction and nonacceleration theorems, critical levels, quasigeostrophic instabilities, topographically and thermally forced stationary waves, theories for stratospheric sudden warmings and the quasi-biennial oscillation of the equatorial stratosphere, and quasi-geostrophic turbulence.

AOS 577 / GEO 577

Climate of the Earth: Present, Past and Future


Thomas L. Delworth

An examination of various components of the Earth's climate system. Emphasis is placed on the role of radiative processes, climate feedbacks and sensitivity, and the nature of energy and water balances. The dynamics and physical interpretation of principal tropospheric circulation systems, including stationary and transient phenomena observed in middle and low latitudes, are studied. Phenomena of topical interest, such as El Niño, seasonal climate anomalies, and natural and anthropogenic climate changes, are also reviewed.

AOS 578 / GEO 578

Chemical Oceanography


Jorge Louis Sarmiento

The chemical composition of the oceans and the nature of the physical and chemical processes governing this composition in the past and the present. The cycles of major and minor oceanic constituents, including interactions with the biosphere, and at the ocean-atmosphere and ocean-sediment interfaces.