MAE 344/BNG 344/MSE 364

Biomechanics and Biomaterials: From Cells to Organisms

The fundamental concepts required for the design and function of implantable medical devices, including basic applications of materials, solid mechanics and fluid mechanics to bone/implant systems. The course examines the interfaces between cells and the surfaces of synthetic biomaterials that are used in orthopedic and dental applications. Prerequisites: MAT 103 and 104, and PHY 103 and 104. Three one-hour lectures.

MOL 415/BNG 415

Modern Biophysics and Systems Biology

At 10 nanometer scale, protein machines 'walk' on microtubule tracks. At a scale 10,000 times larger, sheets of cells self-organize to form ornate shapes that can even heal themselves after injury. This course will examine these and other complex biological systems at the molecular, cellular, and tissue scales. In parallel, we will cover the current and emerging methods that enable us to quantitatively probe and analyze biological systems. Specific topics will include structural biology from crystallography to cryo-electron microscopy, enzyme kinetics and networks, next-gen sequencing and data mining, modern microscopy and image analysis.

CBE 438/BNG 438/MOL 438

Biomolecular Engineering

This course will focus on the design and engineering of biomacromolecules. After a brief review of protein and nucleic acid chemistry and structure, we will delve into rational, evolutionary, and computational methods for the design of these molecules. Specific topics to be covered include aptamers, protein and RNA-based switches and sensors, unnatural amino acids and nucleotides, enzyme engineering, and the integration of these parts via synthetic biology efforts. Two lectures.

BNG 447/CBE 447/GHP 457

Adventures in Engineering Metabolism

Introduction to engineering metabolism. The objective of this course is to introduce students to current techniques and challenges within the field of metabolic engineering. Specific topics include introduction to metabolism, transcriptional regulation, signal transduction, flux balance analysis, and metabolic flux analysis. Designed for upper division students in engineering, chemistry, and molecular biology. Two lectures. Prerequisites: MOL 214 or equivalent.