CHM 201

General Chemistry I

Professor/Instructor

Michael H. Hecht, Robert Paul L'Esperance, Sonja Angelique Francis

An introductory course. Principles of chemistry; understanding the world around us; structure and reactions of atoms and molecules; laboratory manipulations, preparations, and analysis. Fulfills medical school entrance requirements in general chemistry and qualitative analysis. Three lectures, one class, one three-hour laboratory. Open to those whose mathematics preparation is insufficient to qualify them for 203.

CHM 202

General Chemistry II

Professor/Instructor

Andrew Bruce Bocarsly, Robert Paul L'Esperance, Sonja Angelique Francis

Continuation of 201. Principles of chemistry; introduction to chemical bonding and solid state structure; chemical kinetics, nuclear chemistry; descriptive inorganic chemistry; laboratory manipulations, preparations, and analysis. Fulfills medical school entrance requirements in general chemistry and qualitative analysis. Three lectures, one class, one three-hour laboratory.

CHM 203

Advanced General Chemistry I

Professor/Instructor

The fundamental principles of chemistry; descriptive chemistry, molecular structure, and bonding. Lectures and demonstrations. Laboratory includes qualitative and quantitative methods in chemical analysis, as well as selected experiments in general chemistry. Fulfills medical school entrance requirements in general chemistry and qualitative analysis. Three lectures, one class, one three-hour laboratory.

CHM 204

Advanced General Chemistry II

Professor/Instructor

Continuation of 203. Topics in chemistry selected to illustrate fundamental principles; electrochemistry, chemical kinetics, bonding, and descriptive chemistry focusing on inorganic chemistry. Lectures and demonstrations. Laboratory includes qualitative and quantitative methods in chemical analysis, as well as selected experiments in general chemistry. Fulfills medical school entrance requirements in general chemistry and qualitative analysis. Three lectures, one class, one three-hour laboratory.

CHM 207

Advanced General Chemistry: Materials Chemistry

Professor/Instructor

Robert Paul L'Esperance, Haw Yang, Bruce E. Koel

Introduction to the basic concepts of chemistry: stoichiometry, types of reactions, thermodynamics, quantum mechanics, and chemical bonding. Introduction to the structure, chemistry, and properties of technologically important materials: metals, semiconductors, ceramics, and polymers. Fulfills medical school requirements in general chemistry and qualitative analysis. Three lecture hours, one class, one three-hour laboratory.

CHM 215

Advanced General Chemistry: Honors Course

Professor/Instructor

Paul J. Chirik, Robert Paul L'Esperance

An intensive study of fundamental theoretical and experimental principles. Topics are drawn from physical, organic, and inorganic chemistry. For students with excellent preparation who are considering scientific careers. Fulfills medical school entrance requirements in general chemistry and qualitative analysis. Completion of 215 qualifies the student for 300-level courses and some 400-level courses after consultation with the instructor of the upper-level course. Three lectures, one class, one three-hour laboratory.

ISC 231 / CHM 231 / COS 231 / MOL 231 / PHY 231

An Integrated, Quantitative Introduction to the Natural Sciences I

Professor/Instructor

Curtis Gove Callan Jr., Joshua William Shaevitz, Peter Andolfatto

An integrated, mathematically and computationally sophisticated introduction to physics, chemistry, molecular biology, and computer science. Alternative to the combination of PHY 103-104, CHM 201-202, MOL 214-215 and COS126. Students must enroll in ISC231 and ISC232 in the fall and ISC233 and ISC234 in the spring. Prerequisites: familiarity with calculus at the level of MAT103/104 or Advanced Placement Calculus BC, solid high school physics and chemistry courses. Five lectures, one three-hour laboratory, one three-hour computational laboratory, one evening problem session.

ISC 232 / CHM 232 / COS 232 / MOL 232 / PHY 232

An Integrated, Quantitative Introduction to the Natural Sciences I

Professor/Instructor

Peter Andolfatto, Curtis Gove Callan Jr., Joshua William Shaevitz

An integrated, mathematically and computationally sophisticated introduction to physics, chemistry, molecular biology, and computer science. Alternative to the combination of PHY 103-104, CHM 201-202, MOL 214-215 and COS126. Students must enroll in ISC231 and ISC232 in the fall and ISC233 and ISC234 in the spring. Prerequisites: familiarity with the calculus at the level of MAT 103-104 or Advanced Placement Calculus BC, solid high school physics and chemistry courses. Five lectures, one three-hour laboratory, one three-hour computational laboratory, one evening problem session.

ISC 233 / CHM 233 / COS 233 / MOL 233 / PHY 233

An Integrated, Quantitative Introduction to the Natural Sciences II

Professor/Instructor

Joshua William Shaevitz, Olga G. Troyanskaya, Haw Yang

An integrated, mathematically and computationally sophisticated introduction to physics and chemistry, drawing on examples from biological systems. Alternative to the combination of PHY 103-104, CHM 201-202, MOL 214-215, and COS126. Students must enroll in ISC231 and ISC232 in the fall and ISC233 and ISC234 in the spring. Prerequisites: familiarity with the calculus at the level of MAT 103-104 or Advanced Placement Calculus BC, solid high school physics and chemistry courses. Five lectures, one three-hour laboratory, one three-hour computational laboratory, one evening problem session.

ISC 234 / CHM 234 / COS 234 / MOL 234 / PHY 234

An Integrated, Quantitative Introduction to the Natural Sciences II

Professor/Instructor

Joshua William Shaevitz, Olga G. Troyanskaya, Haw Yang

An integrated, mathematically and computationally sophisticated introduction to physics and chemistry, drawing on examples from biological systems. Alternative to the combination of PHY 103-104, CHM 201-202, MOL 214-215 and COS126. Students must enroll in ISC231 and ISC232 in the fall and ISC233 and ISC234 in the spring. Prerequisites: familiarity with the calculus at the level of MAT 103-104 or Advanced Placement Calculus BC, solid high school physics and chemistry courses. Five lectures, one three-hour laboratory, one three-hour computational laboratory, one evening problem session.

GEO 255B / AST 255 / EEB 255 / CHM 255

Life in the Universe

Professor/Instructor

Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures and field training in Yellowstone National Park over Fall break is required. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

GEO 255A / AST 255 / EEB 255 / CHM 255

Life in the Universe

Professor/Instructor

Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures. Track A will be required to take a mid-term exam during Fall break. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

CHM 301

Organic Chemistry I

Professor/Instructor

An introductory course that covers the structures, properties, spectroscopy, and reactivity of organic compounds. Students will learn the mechanisms of organic chemistry and general principles through a combination of lectures and problemsolving in small groups. The course may be followed by 302 or 304. This course is appropriate for students in chemistry, biology, and premedical programs. Prerequisite: 201 and 202; or 203 (or 207) and 204; or 215; or a score of 5 on the AP Chemistry Exam. Three lectures, one three-hour laboratory.

CHM 302

Organic Chemistry II

Professor/Instructor

Continuation of 301. The principles introduced in 301 are extended to the structures and reactions of more complex, often polyfunctional molecules. Small-group problemsolving is emphasized. This course is appropriate for students in chemistry, biology, and premedical programs. Prerequisite: 301. Three classes, one three-hour laboratory.

CHM 303

Organic Chemistry I: Biological Emphasis

Professor/Instructor

Martin F. Semmelhack, Henry Lee Gingrich, Susan Killian VanderKam

Introductory course devoted to the concepts of organic chemistry, including the structures, properties, and reactivity of simpler organic compounds. Emphasis on the mechanisms of organic chemistry; examples from biology when appropriate to illustrate the principles. The course should be followed by 304 in spring. Appropriate for students in biology or premedical programs. Prerequisite: 201 and 202; or 203 (or 207) and 204; or 215; or a score of 5 on the AP Chemistry Exam. Three lectures, one preceptorial, one three-hour laboratory.

CHM 304

Organic Chemistry II: Foundations of Chemical Reactivity and Synthesis

Professor/Instructor

Erik J. Sorensen, Bradley Patrick Carrow, Martin F. Semmelhack

Continuation of 303 (or 301). The concepts introduced in CHM 303 will be extended to the structures and reactions of more complex molecules, with an emphasis on how organic chemistry provides the framework for understanding molecular processes in biology. The fundamental concepts of organic chemistry will be illustrated, as often as possible, with examples drawn from biological systems. Prerequisite: 301 or 303. Three lectures, one preceptorial, one three-hour laboratory.

CHM 305

The Quantum World

Professor/Instructor

Gregory D. Scholes

Introduction to quantum mechanics, surveying applications in chemistry, physics, molecular biology, and molecular imaging. Computer-based tools will be emphasized. Prerequisites: CHM 202 or 204 or 215; MAT 102 or 104; PHY 101 or 102 or AP Physics. Three lectures, one preceptorial.

CHM 306

Physical Chemistry: Chemical Thermodynamics and Kinetics

Professor/Instructor

Michael T. Kelly

Introduction to chemical thermodynamics, statistical mechanics, and kinetics. Special emphasis on biological problems, including nerve conduction, muscle contraction, ion transport, enzyme mechanisms, and macromolecular properties in solutions. Three lectures. Prerequisites: 201 and 202, or 203 (or 207) and 204, or 215; MAT 104; PHY 101 and 102, or PHY 103 and 104; or instructor's permission.

CEE 311 / CHM 311 / GEO 311 / ENE 311

Global Air Pollution

Professor/Instructor

Mark Andrew Zondlo

The chemical and physical processes involved in the transformation, transport, sources, and sinks of air pollutants on local to global scales. Topics include photochemical smog, particulate matter, greenhouse gases, and stratospheric ozone depletion. Students will have the unique opportunity to analyze chemical and physical data acquired in real-time from the NSF Gulfstream-V research aircraft as it probes the atmosphere from the Earth's surface to the lower stratosphere over a latitudinal range from the Arctic to the Antarctic. A wide range of environments will be studied, from very clean, remote portions of the globe to urban megacities.

GEO 363 / CHM 331 / ENV 331

Environmental Geochemistry: Chemistry of the Natural Systems

Professor/Instructor

Satish Chandra Babu Myneni

Covers topics including origin of elements; formation of the Earth; evolution of the atmosphere and oceans; atomic theory and chemical bonding; crystal chemistry and ionic substitution in crystals; reaction equilibria and kinetics in aqueous and biological systems; chemistry of high-temperature melts and crystallization process; and chemistry of the atmosphere, soil, marine, and riverine environments. The biogeochemistry of contaminants and their influence on the environment will also be discussed. Two 90-minute lectures. Prerequisite: one term of college chemistry or instructor's permission.

CHM 333 / ENV 333 / GEO 333

Oil to Ozone: Chemistry of the Environment

Professor/Instructor

The chemistry behind environmental issues, including energy consumption, atmospheric change, water consumption and pollution, food production and toxic chemicals. The course includes discussion of questions and problems, guest lectures, and a group project to construct an informational Web page. Prerequisites: a 200-level chemistry course or permission of instructor.

MOL 345 / CHM 345

Biochemistry

Professor/Instructor

Fundamental concepts of biomolecular structure and function will be discussed, with an emphasis on principles of thermodynamics, binding and catalysis. A major portion of the course will focus on metabolism and its logic and regulation. Prerequisites: MOL 214/215 and either CHM 304/304B or ISC 335. CHM 304/304B may be taken concurrently with MOL 345.

GEO 364 / CHM 364

Earth Chemistry: The Major Realms of the Planet

Professor/Instructor

Daniel Mikhail Sigman

The chemical composition of the major realms of the planet: core, mantle, continents, ocean, atmosphere, and biosphere. Topics include the synthesis of the chemical elements in stars, the origin of the solar system and Earth, and the chemical differentiation of Earth's core, mantle, crust, ocean, atmosphere, and biosphere. Also explores the global cycles of carbon, nitrogen, and other biologically important elements, their interactions with the geosphere, and their evolution through time. Prerequisites: CHM 201, or equivalent; MAT 103, or equivalent. Three lectures.

CHM 371

Experimental Chemistry

Professor/Instructor

Michael T. Kelly, Chia-Ying Wang

Discusses the principles of experimental design, data acquisition, analysis and interpretation, and the presentation of experimental results. Students are exposed to a broad range of quantitative laboratory methods in preparation for thesis work in chemistry. Typical laboratory exercises include synthesis, physical characterization, spectroscopy, kinetics, thermodynamics, electronics ,and instrument design. Lectures on experimental design, data analysis, interpretation, and presentation. Two lectures, two three-hour laboratories.

CHM 403

Advanced Organic Chemistry

Professor/Instructor

John Taylor Groves, Paul Joseph Reider

A selection of advanced topics in organic chemistry. Topics include reaction mechanisms, synthetic chemistry, chemistry of biologically important molecules. Selected biosynthetic pathways are compared and contrasted to synthetic approaches. Three lectures. Prerequisites: 301 and 302 (or 304); or, 303 and 304.