EEB 211 / MOL 211

Life on Earth: Chaos and Clockwork of Biological Design


Daniel Ian Rubenstein, Andrew P. Dobson, Joshua Akey

An examination of how life evolved and how organisms function. Design--'intelligent' and otherwise--will provide a unifying theme. Why do some microbes produce slime and others do not? Why are males brightly colored in some species, but in others females are the showy sex? Why do humans have knees that fail whereas horses and zebras do not? These and other 'why is it so' questions related to the origin and history of life, genetic code, biochemistry, physiology, morphology and body plans, sex and reproduction, cooperation, and ecosystems will be explored. This course is required of all EEB majors and fulfills a requirement for medical school.

MOL 214 / EEB 214

Introduction to Cellular and Molecular Biology


Important concepts and elements of molecular biology, biochemistry, genetics, and cell biology, are examined in an experimental context. This course fulfills the requirement for students majoring in the biological sciences and satisfies the biology requirement for entrance into medical school. Two 90-minute lectures, one three-hour laboratory.

MOL 215 / EEB 215 / CBE 215

Quantitative Principles in Cell and Molecular Biology


Alexei V. Korennykh, Jared E. Toettcher, Philip George Felton

Central concepts and experiments in cellular, molecular, and developmental biology with an emphasis on underlying physical and engineering principles. Topics include the genetic code; energetics and cellular organization; communication, feeding, and signaling between cells; feedback loops and cellular organization; problems and solutions in development; the organization of large cellular systems, such as the nervous and immune systems. Satisfies the biology requirement for entrance into medical school. Prerequisites: AP biology, physics, and calculus. Three lectures, one three-hour laboratory.

GEO 255B / AST 255 / EEB 255 / CHM 255

Life in the Universe


Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures and field training in Yellowstone National Park over Fall break is required. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

GEO 255A / AST 255 / EEB 255 / CHM 255

Life in the Universe


Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures. Track A will be required to take a mid-term exam during Fall break. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

EEB 301 / GSS 301

Evolution and the Behavior of the Sexes


Psychological, biological, and cross-cultural approaches to the study of sex and gender. Topics include biological components and development of sex differences; acquisitions of gender identity; social organization of key life cycle events; evolutionary considerations in the study of sex differences. One 90-minute lecture, one 90-minute class.

ENV 304 / ECO 328 / EEB 304 / WWS 455

Disease Ecology, Economics, and Policy


C. Jessica E. Metcalf, Bryan T. Grenfell

The dynamics of the emergence and spread of disease arise from a complex interplay among disease ecology, economics, and human behavior. Lectures will provide an introduction to complementarities between economic and epidemiological approaches to understanding the emergence, spread, and control of infectious diseases. The course will cover topics such as drug-resistance in bacterial and parasitic infections, individual incentives to vaccinate, the role of information in the transmission of infectious diseases, and the evolution of social norms in healthcare practices. One three-hour lecture, one preceptorial.

CEE 307 / EEB 305

Water, Energy, and Ecosystems


This three-week course, offered as part of a four-course study abroad semester, takes place at Princeton Univeristy's Mpala Research Centre in central Kenya. The course will provide an introduction to the principles of hydrological sciences via the development and application of instrumentation for characterizing surface/subsurface hydrological dynamics in field settings. Lectures and field activities will address the theory of operation, design, and implementation of methods used to quantify hydrological patterns and processes. Prerequisite: MAT 201.

ANT 206B / EEB 306 / AFS 206

Human Evolution


Janet Marie Monge

An investigation of the evidence and background of human evolution. Emphasis will be placed on the examination of the fossil and genetic evidence for human evolution and its functional and behavioral implications. Two lectures, one preceptorial, one 90-minute laborabory.

EEB 308

Conservation Biology


David S. Wilcove

A detailed application of ecological principles to the conservation of biological resources, including island biogeography, population genetics and viability, and landscape ecology. Analysis of case studies in conservation. Individual project on a conservation issue of the student's choice. Two lectures, one preceptorial.

EEB 309

Evolutionary Biology


Bridgett Marie vonHoldt

All life on Earth has evolved and continues to evolve. This course will explore evolution at both the molecular and organismal level. We will examine the features that are universal to all life and that document its descent from a common ancestor that lived over 3 billion years ago. Topics include the origin of life, the evidence for natural selection, methods for reconstructing evolutionary history using DNA, population genetics, genome evolution, speciation, extinction, and human origins. This course will provide you with the basic tools to understand how evolution works and can produce the incredible diversity of life on our planet.

EEB 311A

Animal Behavior


James L. Gould

An examination of the mechanisms and evolution of the behavior of humans and other animals. Topics include the sensory worlds of animals, the nature of instinct, neural mechanisms of perception, comparative studies of communication, learning, cognition, mate choice, and social behavior, and the biology of human development and language acquisition. Two 90-minute lectures, one preceptorial.

EEB 312 / ENV 312

Marine Biology


James L. Gould

An intensive four-week course during June in Bermuda. Covers elements of the ecology, evolution, physiology, and behavior of marine organisms and ecosystems. Habitats examined will include the intertidal zone, seagrass beds, mangroves, and the open ocean, with special attention to coral reefs. Topics range from the physiology and behavior of individuals in the habitat, to the flow of energy, predator/prey interactions, symbioses, and population dynamics. Prerequisites: 210 or 211, ability to swim. Three hours of lectures, three hours of laboratory and field trips per day.

EEB 314

Comparative Physiology


The study of how animals function with emphasis on the integration of physiological processes at the cellular, organ, and whole organism levels in ecological and evolutionary contexts. Comparisons among species and higher taxa are used to illustrate general physiological principles and their evolutionary correlates. Three lectures, one three-hour laboratory. Prerequisite: 210 or 211.

ANT 215 / EEB 315

Human Adaptation


Janet Marie Monge

Human adaptation focuses on human anatomy and behavior from an evolutionary perspective. Lectures and weekly laboratory sessions focus on the evolution of the human brain, dentition, and skeleton to provide students with a practical understanding of the anatomy and function of the human body and its evolution, as well as some of its biological limitations. No science background required. Two 90-minute lectures, one three-hour laboratory.

EEB 320 / MOL 330

Molecular Evolution


Laura Faye Landweber

How and where did life evolve? This advanced seminar will discuss the evolution of the molecules that sustain life (DNA, RNA and proteins) at both the micro and macro evolutionary levels. We will explore the role of these molecules in the origin and continued evolution of life. Topics include the origin of eukaryotes and organelles, comparative genomics, population genetics, the microbiome, and human evolution. Prerequisites: 214, 215, or CHM 236. One three-hour seminar. Note that students new to either evolution or genetics will find 309 more appropriate.

EEB 321

Ecology: Species Interactions, Biodiversity and Society


Robert Mitchell Pringle

How do wild organisms interact with each other, their physical environments, and human societies? Lectures will examine a series of fundamental topics in ecology -- herbivory, predation, competition, mutualism, species invasions, biogeographic patterns, extinction, climate change, and conservation, among others--through the lens of case studies drawn from all over the world. Readings will provide background information necessary to contextualize these case studies and clarify the linkages between them. Precepts and fieldwork will explore the process of translating observations and data into an understanding of how the natural world works.

EEB 322

Advanced Ecology


Stephen Wilson Pacala

An advanced overview of the structure of ecological communities, particularly temperate and tropical forests. Emphasis will be on factors governing species diversity and abundance on both local and global scales. Other topics will include the impact of humans on biodiversity at global scales, and the effects of biodiversity on the regulation of climate and the cycling of key elements such as carbon and nitrogen. Prerequisite: 321; one year of calculus recommended. Two 90-minute lectures, one preceptorial.

EEB 323

Integrative Dynamics of Animal Behavior


An exploration of the fundamental principles underlying the organization and function of animal behavior. This course will examine how complex actions emerge from simple rules. Since forces shaping behavior naturally cross scales and disciplinary boundaries, this course will draw on information from neuroscience, evolutionary biology, ecology, physiology, genetics, and the biology of complex systems. Two 90-minute lectures, one preceptorial.

EEB 324

Theoretical Ecology


Simon Asher Levin

Current and classical theoretical issues in ecology and evolutionary biology. Emphasis will be on theories and concepts and on mathematical approaches. Topics will include population and community ecology, epidemiology and evolutionary theory. Two lectures, one preceptorial/computer laboratory. Prerequisite: one year of calculus.

EEB 325

Mathematical Modeling in Biology and Medicine


Corina E. Tarnita

How can mathematical modeling help to illuminate biological processes? This course examines major topics in biology through the lens of mathematics, focusing on the role of models in scientific discovery. Students will learn how to build and analyze models using a variety of mathematical tools. Particular emphasis will be placed on evolutionary game theory. Specific topics will include: the evolution of cooperation and of social behavior from bacteria to humans; the evolution of multicellularity; the somatic evolution of cancer; virus dynamics (within host and within populations); and multispecies interactions and the evolution of mutualisms.

EEB 327 / MOL 327 / GHP 327

Immune Systems: From Molecules to Populations


Andrea Linn Graham

Why is there immunological polymorphism in animal populations? Why do immune systems work as they do? This course examines the theories of host-parasite coevolution, including optimal host resource allocation to immune defense in light of parasite counter-strategies, and assesses the empirical evidence by which these theories are tested. Students look at the evolutionary ecology of mechanisms used by immune systems to recognize and kill parasites, finding similarities across animal taxa. Finally, students will map immune mechanisms onto host phylogenies to understand the order in which different mechanisms arose over evolutionary time.

EEB 328 / GHP 328

Ecology and Epidemiology of Parasites and Infectious Diseases


Andrew P. Dobson

An introduction to the biology of viruses, bacteria, fungi, protozoa, worms, arthropods, and plants that are parasitic upon other animal and plant species. The major emphasis will be on the parasites of animals and plants, with further study of the epidemiology of infectious diseases in human populations. Studies of AIDS, anthrax, and worms, and their role in human history, will be complemented by ecological and evolutionary studies of mistletoe, measles, myxomatosis, and communities of parasitic helminths. Limited to students in the Tropical Ecology Program in Panama.

EEB 332 / LAS 350

Pre-Columbian Peoples of Tropical America and Their Environments


An intensive course on the pre-European history of Amerind cultures and their environments in the New World tropics. Topics include the people of tropical America; development of hunting/gathering and agricultural economies; neotropical climate and vegetation history; and the art, symbolism, and social organization of native Americans. Daily lectures, field trips, and laboratory experiences and incorporates methods and problems in field archaeology, paleoethnobotany and paleoecology, and archaeozoology. Limited to students in the Tropical Ecology Program in Panama. This course does not count as an EEB departmental. Prerequisite: EEB 321.

PSY 336 / EEB 336 / NEU 336

The Diversity of Brains


Asif A. Ghazanfar

A survey of the unique behaviors of different animal species and how they are mediated by specialized brain circuits. Topics include, for example, monogamy in voles, face recognition in primates, sex- and role-change in fish, and predation by bats. The role of evolutionary and developmental constraints on neural circuit construction will be a key underlying theme. Prerequisites: 258 or 259. One three-hour seminar.