EEB 211 / MOL 211

Life on Earth: Chaos and Clockwork of Biological Design

Professor/Instructor

Joshua Akey, Andrew P. Dobson

An examination of how life evolved and how organisms function. Design--'intelligent' and otherwise--will provide a unifying theme. Why do some microbes produce slime and others do not? Why are males brightly colored in some species, but in others females are the showy sex? Why do humans have knees that fail whereas horses and zebras do not? These and other 'why is it so' questions related to the origin and history of life, genetic code, biochemistry, physiology, morphology and body plans, sex and reproduction, cooperation, and ecosystems will be explored. This course is required of all EEB majors and fulfills a requirement for medical school.

MOL 214 / EEB 214

Introduction to Cellular and Molecular Biology

Professor/Instructor

Important concepts and elements of molecular biology, biochemistry, genetics, and cell biology, are examined in an experimental context. This course fulfills the requirement for students majoring in the biological sciences and satisfies the biology requirement for entrance into medical school. Two 90-minute lectures, one three-hour laboratory.

MOL 215 / EEB 215 / CBE 215

Quantitative Principles in Cell and Molecular Biology

Professor/Instructor

Alexei V. Korennykh, Jared E. Toettcher, Philip George Felton

Central concepts and experiments in cellular, molecular, and developmental biology with an emphasis on underlying physical and engineering principles. Topics include the genetic code; energetics and cellular organization; communication, feeding, and signaling between cells; feedback loops and cellular organization; problems and solutions in development; the organization of large cellular systems, such as the nervous and immune systems. Satisfies the biology requirement for entrance into medical school. Prerequisites: AP biology, physics, and calculus. Three lectures, one three-hour laboratory.

GEO 255B / AST 255 / EEB 255 / CHM 255

Life in the Universe

Professor/Instructor

Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures and field training in Yellowstone National Park over Fall break is required. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

ENV 304 / ECO 328 / EEB 304 / WWS 455

Disease Ecology, Economics, and Policy

Professor/Instructor

C. Jessica E. Metcalf, Bryan T. Grenfell

The dynamics of the emergence and spread of disease arise from a complex interplay among disease ecology, economics, and human behavior. Lectures will provide an introduction to complementarities between economic and epidemiological approaches to understanding the emergence, spread, and control of infectious diseases. The course will cover topics such as drug-resistance in bacterial and parasitic infections, individual incentives to vaccinate, the role of information in the transmission of infectious diseases, and the evolution of social norms in healthcare practices. One three-hour lecture, one preceptorial.

ANT 206B / EEB 306 / AFS 206

Human Evolution

Professor/Instructor

Janet Marie Monge

An investigation of the evidence and background of human evolution. Emphasis will be placed on the examination of the fossil and genetic evidence for human evolution and its functional and behavioral implications. Two lectures, one preceptorial, one 90-minute laborabory.

EEB 308

Conservation Biology

Professor/Instructor

David S. Wilcove

Students will use ecological principles and policy analysis to examine conflicts between human activities such as farming, forestry, and infrastructure development, and the conservation of species and ecosystem services. Two lectures, one preceptorial.

EEB 309

Evolutionary Biology

Professor/Instructor

Bridgett Marie vonHoldt

All life on Earth has evolved and continues to evolve. This course will explore evolution at both the molecular and organismal level. We will examine the features that are universal to all life and that document its descent from a common ancestor that lived over 3 billion years ago. Topics include the origin of life, the evidence for natural selection, methods for reconstructing evolutionary history using DNA, population genetics, genome evolution, speciation, extinction, and human origins. This course will provide you with the basic tools to understand how evolution works and can produce the incredible diversity of life on our planet.

EEB 311A

Animal Behavior

Professor/Instructor

James L. Gould

An examination of the mechanisms and evolution of the behavior of humans and other animals. Topics include the sensory worlds of animals, the nature of instinct, neural mechanisms of perception, comparative studies of communication, learning, cognition, mate choice, and social behavior, and the biology of human development and language acquisition. Two 90-minute lectures, one preceptorial.

EEB 314

Comparative Physiology

Professor/Instructor

The study of how animals function with emphasis on the integration of physiological processes at the cellular, organ, and whole organism levels in ecological and evolutionary contexts. Comparisons among species and higher taxa are used to illustrate general physiological principles and their evolutionary correlates. Three lectures, one three-hour laboratory. Prerequisite: 210 or 211.

ANT 215 / EEB 315

Human Adaptation

Professor/Instructor

Janet Marie Monge

Human adaptation focuses on human anatomy and behavior from an evolutionary perspective. Lectures and weekly laboratory sessions focus on the evolution of the human brain, dentition, and skeleton to provide students with a practical understanding of the anatomy and function of the human body and its evolution, as well as some of its biological limitations. No science background required. Two 90-minute lectures, one three-hour laboratory.

EEB 321

Ecology: Species Interactions, Biodiversity and Society

Professor/Instructor

Robert Mitchell Pringle

How do wild organisms interact with each other, their physical environments, and human societies? Lectures will examine a series of fundamental topics in ecology -- herbivory, predation, competition, mutualism, species invasions, biogeographic patterns, extinction, climate change, and conservation, among others--through the lens of case studies drawn from all over the world. Readings will provide background information necessary to contextualize these case studies and clarify the linkages between them. Precepts and fieldwork will explore the process of translating observations and data into an understanding of how the natural world works.

EEB 324

Theoretical Ecology

Professor/Instructor

Simon Asher Levin

Current and classical theoretical issues in ecology and evolutionary biology. Emphasis will be on theories and concepts and on mathematical approaches. Topics will include population and community ecology, epidemiology and evolutionary theory. Two lectures, one preceptorial/computer laboratory. Prerequisite: one year of calculus.

EEB 325

Mathematical Modeling in Biology and Medicine

Professor/Instructor

Corina E. Tarnita

How can mathematical modeling help to illuminate biological processes? This course examines major topics in biology through the lens of mathematics, focusing on the role of models in scientific discovery. Students will learn how to build and analyze models using a variety of mathematical tools. Particular emphasis will be placed on evolutionary game theory. Specific topics will include: the evolution of cooperation and of social behavior from bacteria to humans; the evolution of multicellularity; the somatic evolution of cancer; virus dynamics (within host and within populations); and multispecies interactions and the evolution of mutualisms.

EEB 327 / MOL 327 / GHP 327

Immune Systems: From Molecules to Populations

Professor/Instructor

Andrea Linn Graham

Why is there immunological polymorphism in animal populations? Why do immune systems work as they do? This course examines the theories of host-parasite coevolution, including optimal host resource allocation to immune defense in light of parasite counter-strategies, and assesses the empirical evidence by which these theories are tested. Students look at the evolutionary ecology of mechanisms used by immune systems to recognize and kill parasites, finding similarities across animal taxa. Finally, students will map immune mechanisms onto host phylogenies to understand the order in which different mechanisms arose over evolutionary time.

EEB 328 / GHP 328

Ecology and Epidemiology of Parasites and Infectious Diseases

Professor/Instructor

Andrew P. Dobson

An introduction to the biology of viruses, bacteria, fungi, protozoa, worms, arthropods, and plants that are parasitic upon other animal and plant species. The major emphasis will be on the parasites of animals and plants, with further study of the epidemiology of infectious diseases in human populations. Studies of AIDS, anthrax, and worms, and their role in human history, will be complemented by ecological and evolutionary studies of mistletoe, measles, myxomatosis, and communities of parasitic helminths. Limited to students in the Tropical Ecology Program in Panama.

EEB 332 / LAS 350

Pre-Columbian Peoples of Tropical America and Their Environments

Professor/Instructor

An intensive course on the pre-European history of Amerind cultures and their environments in the New World tropics. Topics include the people of tropical America; development of hunting/gathering and agricultural economies; neotropical climate and vegetation history; and the art, symbolism, and social organization of native Americans. Daily lectures, field trips, and laboratory experiences and incorporates methods and problems in field archaeology, paleoethnobotany and paleoecology, and archaeozoology. Limited to students in the Tropical Ecology Program in Panama. This course does not count as an EEB departmental. Prerequisite: EEB 321.

PSY 336 / EEB 336 / NEU 336

The Diversity of Brains

Professor/Instructor

Asif A. Ghazanfar

A survey of the unique behaviors of different animal species and how they are mediated by specialized brain circuits. Topics include, for example, monogamy in voles, face recognition in primates, sex- and role-change in fish, and predation by bats. The role of evolutionary and developmental constraints on neural circuit construction will be a key underlying theme. Prerequisites: 258 or 259. One three-hour seminar.

EEB 338 / LAS 351

Tropical Biology

Professor/Instructor

This intensive field course, at various sites in Panama, examines the origins, maintenance, and major interactions among elements of the tropical-terrestrial biota. Study topics include identification of common orders and families of neotropical organisms; tropical climate and hydrology; biotic interactions; and contemporary and historical factors in shaping tropical landscapes, with emphasis on the Isthmian Landbridge and subsequent floral and faunal interactions. Two hours of lecture/discussion, six hours of laboratory, and two hours of data analysis daily. Limited to students in the Tropical Ecology Program in Panama. Prerequisite: 321.

EEB 346

Biology of Coral Reefs

Professor/Instructor

This intensive field course provides an in-depth introduction to the biology of tropical coral reefs, with an emphasis on reef fish ecology and behavior. Students learn to identify fishes, corals, and invertebrates, and learn a variety of field methods including underwater censusing, mapping, videotaping, and the recording of inter-individual interactions. Two hours of lecture/discussion, six hours of laboratory, and two hours of data analysis daily. Snorkeling in open ocean and walking in wild terrain is common. Limited to students in the Tropical Ecology Program in Panama. Prerequisite: 321.

EEB 350

Vertebrate Tropical Ecology

Professor/Instructor

This intensive field course addresses the life-history characteristics of tropical vertebrates and the physiological traits that underlie them. Students will learn how tropical life histories differ from those in the temperate zone and will use eco-physiological techniques while conducting experiments and observations at a Smithsonian Institute field station. Two hours of lecture/discussion, six hours of laboratory, and two hours of data analysis daily. Limited to students in the Tropical Ecology Program in Panama. Prerequisite: 321.

GHP 351 / WWS 381 / EEB 351

Epidemiology: An Ecological and Evolutionary Perspective

Professor/Instructor

Joseph J. Amon

Focuses on the distribution and determinants of disease. Diverse methodological approaches for measuring health status, disease occurrence, and the association between risk factors and health outcomes will be presented via classic and contemporary studies of chronic and infectious illness and disease outbreaks. Emphasis on: causal inference, study design and sampling, bias and confounding, the generalizability of research, health policy and research ethics. Prerequisite: an approved basic statistics course. Two 90-minute lectures, one preceptorial.

EEB 404

Natural History of Mammals

Professor/Instructor

Daniel Ian Rubenstein

Students examine how mammals interact with diverse and potentially conflicting features of their environment in order to understand the concepts, methods, and material of comparative natural history. Perspectives include morphology, identification, evolution, ecology, behavior, habitat, and conservation. Original observations and experiments culminate in class, group, and individual research projects. This intensive field course entails two hours of lecture/discussion, six hours of laboratory, and two hours of data analysis daily. Limited to students in the Tropical Ecology Program in Kenya. Prerequisite: 211 and 321.

EEB 417A / ENV 417

Ecosystems and Global Change

Professor/Instructor

Lars O. Hedin

An introduction to the concepts, approaches, and methods for studying complex ecological systems, from local to global scales. Students will examine nutrient cycling, energy flow, and evolutionary processes, with emphasis on experimental approaches and comparisons between terrestrial, freshwater, and marine ecosystems. Particular attention will be on effects of human activities, including climate change, biodiversity loss, eutrophication, and acid rain. Prerequisites: 210 or 211 or equivalent; CHM 301 or equivalent. Two 90-minute classes.

EEB 417B / ENV 417

Ecosystems and Global Change

Professor/Instructor

Lars O. Hedin

An introduction to the concepts, approaches, and methods for studying complex ecological systems, from local to global scales. Students will examine nutrient cycling, energy flow, and evolutionary processes, with emphasis on experimental approaches and comparisons between terrestrial, freshwater, and marine ecosystems. Particular attention will be on effects of human activities, including climate change, biodiversity loss, eutrophication, and acid rain. Prerequisites: 210 or 211 or equivalent; CHM 301 or equivalent. Two 90-minute classes, one three-hour laboratory.