ELE 102 / EGR 103

New Eyes for the World: Hands-On Optical Engineering

Professor/Instructor

Claire F. Gmachl

This lab course introduces students to modern topics of engineering optics. Teams of students will carry out four different projects: holography, lasers, free-space optical communication, and nanotechnology. Teaches the foundations and broader societal issues of these technologies. The laboratory sessions involve hands-on training as well as experimentation and exploration. Skills acquired in this course include computer programming of user interfaces, data acquisition and interpretation, wet chemical processing, and electronics design assembly. One 90-minute lecture, one three-hour laboratory.

ELE 201

Information Signals

Professor/Instructor

Paul W. Cuff

Signals that carry information, e.g. sound, images, sensors, radar, communication, robotic control, play a central role in technology and engineering. This course teaches mathematical tools to analyze, manipulate, and preserve information signals. We discuss how continuous signals can be perfectly represented through sampling, leading to digital signals. Major focus points are the Fourier transform---how, when, and why to use it, linear time-invariant systems, modulation, and stability. We use MatLab for design projects, such as a "Shazam" music ID system. Three lectures, one laboratory. Prerequisite: knowledge of elementary calculus

ELE 203

Electronic Circuit Design, Analysis and Implementation

Professor/Instructor

Naveen Verma

Introduction to electronic theory and practice. DC and AC circuit analysis theorems and passive and active components, from resistors/capacitors/inductors to operational amplifiers. Feedback, sinusoidal steady state analysis, frequency response, resonance, diodes, transistors. Creative circuit design using light and sound outputs. Final project on bio-sensing, including design and testing of an electrocardiogram circuit to sense real heartbeats. SPICE circuit simulation is introduced and leveraged in the labs and project. Three lectures, one laboratory. Prerequisite: knowledge of freshman physics and elementary calculus

ELE 206 / COS 306

Contemporary Logic Design

Professor/Instructor

Sharad Malik

Logic circuits are at the heart of modern computing and communication chips. These deliver valuable societal solutions in several key areas: in information retrieval and processing using smart phones and cloud computing; in smart sensing and control as in emerging chips for human health care; and in critical security applications such as protecting infrastructures like the internet and energy production/distribution systems. Foundational aspects of logic design; contemporary design principles and practices. Three lectures, one laboratory. Prerequisite: an introductory programming course, or equivalent programming experience.

ELE 208

Electronic and Photonic Devices

Professor/Instructor

Nathalie P. de Leon

Explores ways in which semiconductor devices harness and control electrons and photons to generate, store or transmit information. The basics of semiconductor electronics and photonics are introduced. Discusses diodes, transistors, LEDs, solar-cells, and lasers, which form the foundations of integrated circuits, microchips, displays, cameras, etc. Nanotechnology, a recent addition to devices and systems, is introduced. Laboratory: fundamentals of micro-and nano-fabrication, fabrication of Si integrated circuits, semiconductor light emitters, quantum devices.

PHI 218 / ELE 218 / EGR 218

Learning Theory and Epistemology

Professor/Instructor

Gilbert H. Harman, Sanjeev Ramesh Kulkarni

An accessible introduction for all students to recent results by logicians, computer scientists, psychologists, engineers, and statisticians concerning the nature and limits of learning. Topics include truth and underdetermination, induction, computability, language learning, pattern recognition, neural networks, and the role of simplicity in theory choice. Two lectures, one preceptorial.

ELE 222A / EGR 222

The Computing Age

Professor/Instructor

The past several decades have seen an exponential growth in computing as reflected in modern computers as well as consumer products such as music/video players and cell phones. This course will explore the reasons for this growth through studying the core principles of computing. It will cover representation of information including video and music, the design of computers and consumer devices, and their efficient implementation using computer chips. Finally, it will examine the technological factors that will likely limit future growth and discuss the societal impact of this outcome. Two 90-minute lectures, one preceptorial.

ELE 222B / EGR 222

The Computing Age

Professor/Instructor

The past several decades have seen an exponential growth in computing as reflected in modern computers as well as consumer products such as music/video players and cell phones. This course will explore the reasons for this growth through studying the core principles of computing. It will cover representation of information including video and music, the design of computers and consumer devices, and their efficient implementation using computer chips. Finally, it will examine the technological factors that will likely limit future growth and discuss the societal impact of this outcome. Two 90-minute lectures, one three-hour laboratory.

ELE 301

Designing Real Systems

Professor/Instructor

Gerard Wysocki

This course focuses on the science, engineering, and design of the highly integrated systems that dominate many of today's devices. Analysis of systems, subsystems, and basic principles will be covered, with an emphasis on hardware-software optimization, sampling and digitization, signal and noise, feedback and control, and communication. Prerequisites: ELE 201, ELE 203, ELE 206.

ELE 302

Building Real Systems

Professor/Instructor

Jeffrey Douglas Thompson

Comprehensive laboratory-based course in electronic system design and analysis. Covers formal methods for the design and analysis of moderately complex real-world electronic systems. Course is centered around a semester-long design project involving a computer-controlled vehicle designed and constructed by teams of two students. Integrates microprocessors, communications, and control. Three lectures, one laboratory; open laboratory during final month. Prerequisites: 206 and 301 or permission of instructor.

ELE 341

Solid-State Devices

Professor/Instructor

Antoine Kahn

The physics and technology of solid-state devices. Topics include: p-n junctions and two terminal devices, transistors, silicon controlled rectifiers, field effect devices, silicon vidicon and storage tubes, metal-semiconductor contacts and Schottky barrier devices, microwave devices, junction lasers, liquid crystal devices, and fabrication of integrated circuits. Three hours of lectures. Prerequisite: 208 or the equivalent.

ELE 342

Principles of Quantum Engineering

Professor/Instructor

Alejandro W. Rodriguez

Fundamental principles of solid-state and optoelectronic device operation. Principles of quantum mechanics (Schroedinger equation, operator and matrix methods) important to a basic understanding of solid-state and quantum electronics. Topics in statistical mechanics, including distribution functions, density of states, Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. Applications to atoms, molecules, lasers, and solids, with special emphasis on semiconductors. Three hours of lectures.

ELE 351

Electromagnetic Field Theory and Physical Optics

Professor/Instructor

Gerard Wysocki

This course should provide the students with a broad and solid background in electromagnetics, including both statics and dynamics, as described by Maxwell's equations. Fundamental concepts of diffraction theory, Fourier optics, polarization of light, and geometrical optics will be discussed. Emphasis will be on basic engineering principles, and applications will be discussed throughout. Examples include cavities, waveguides, antennas, fiber optic communications, and imaging.

ELE 352

Physical Optics

Professor/Instructor

Jason W. Fleischer

Fundamental and practical aspects of physical optics. Lenses and ray optics, lens maker's formula, wave propagation, Fourier optics, Gaussian beams are all considered. Design and use of practical optical systems including optical beam steering in medicine, fiber optics. Three hours of lectures. Prerequisite: PHY 104.

COS 375 / ELE 375

Computer Architecture and Organization

Professor/Instructor

Margaret Rose Martonosi

An introduction to computer architecture and organization. Instruction set design; basic processor implementation techniques; performance measurement; caches and virtual memory; pipelined processor design; design trade-offs among cost, performance, and complexity. Two 90-minute classes, one self-scheduled hardware laboratory. Prerequisites: COS 217.

ELE 381 / COS 381

Networks: Friends, Money and Bytes

Professor/Instructor

This course is oriented around 20 practical questions in the social, economic, and technological networks in our daily lives. How does Google sell ad spaces and rank webpages? How does Netflix recommend movies and Amazon rank products? How do I influence people on Facebook and Twitter? Why doesn't the Internet collapse under congestion, and does it have an Achilles heel? Why does each gigabyte of mobile data cost $10, but Skype is free? How come Wi-Fi is slower at hotspots than at home, and what is inside the cloud of iCloud? In formulating and addressing these questions, we introduce the fundamental concepts behind the networking industry.

ELE 386 / EGR 386

Cyber Security

Professor/Instructor

Ruby Bei-Loh Lee

The technology underlying secure transactions and safe interactions in a public Internet and wireless world. Humans interact daily with each other, with information, and with services through cyberspace. Topics include policy, economic, and social issues related to cyber security needs such as confidentiality, data integrity, user authentication, trust, non-repudiation, availability, privacy and anonymity, case studies in electronic commerce, denial of service attacks, viruses and worms, digital rights management, surveillance, and cyber-terrorism. Two 90-minute lectures.

ELE 391 / EGR 391

The Wireless Revolution: Telecommunications for the 21st Century

Professor/Instructor

This interdisciplinary course addresses technological, regulatory, economic, and social issues arising in the rapidly developing field of wireless communications. The course introduces students to a major technological trend that will be a significant force in worldwide commercial and social development throughout the 21st century. Prerequisites: MAT 103 or permission of instructor. Two 90-minute lectures.

ELE 396 / COS 396

Introduction to Quantum Computing

Professor/Instructor

Andrew Addison Houck

This course will introduce the matrix form of quantum mechanics and discuss the concepts underlying the theory of quantum information. Some of the important algorithms will be discussed, as well as physical systems which have been suggested for quantum computing. Three lectures. Prerequisite: Linear algebra at the level of MAT 202, 204, 217, or the equivalent.

ELE 397

Junior Independent Work

Professor/Instructor

Provides an opportunity for a student to concentrate on a "state-of-the-art" project in electrical engineering. Topics may be selected from suggestions by faculty members or proposed by the student. The final choice must be approved by the faculty member.

ELE 398

Junior Independent Work

Professor/Instructor

Provides an opportunity for a student to concentrate on a "state-of-the-art" project in electrical engineering. Topics may be selected from suggestions by faculty members or proposed by the student. The final choice must be approved by the faculty member.

ELE 404

Electronic Circuits for Biomedical Application

Professor/Instructor

Naveen Verma

Start by analyzing biological systems to understand the origins of some of the signals that they present. Develop circuit models of these systems to determine what instrumentation circuits are required at the interface so that the signals can be reliably acquired. Study analog circuit topologies based on MOSFETs for low-noise instrumentation and processing of the signals. Study digital topologies based on MOSFETs for extensive computations on the biological signals. Analyze the trade-offs between the analog and digital topologies. Emphasis is on design and analysis using circuit simulators.

ENE 431 / ELE 431 / ENV 431 / EGR 431

Solar Energy Conversion

Professor/Instructor

Principles, designs, and economics of solar conversion systems. Quantity and availability of solar energy. Physics and chemistry of solar energy conversion: solar optics; quantum processes; optical excitation; and transport of excitations, electronic, and ionic charge. Methods for conversion: photovoltaics; photoelectrochemistry; photocatalysis; photosynthesis; and solar thermal conversion. Energy collection, transport and storage. Economics: life cycle costing; and societal value of renewable energy. Two 1.5 hour lectures, one laboratory. Prerequisites: MAT 104, PHY 104, and CHM 207.

COS 432 / ELE 432

Information Security

Professor/Instructor

Edward William Felten, Arvind Narayanan

Security issues in computing, communications, and electronic commerce. Goals and vulnerabilities; legal and ethical issues; basic cryptology; private and authenticated communication; electronic commerce; software security; viruses and other malicious code; operating system protection; trusted systems design; network security; firewalls; policy, administration and procedures; auditing; physical security; disaster recovery; reliability; content protection; privacy. Prerequisites: 217 and 226. Two 90-minute lectures.

ELE 441 / ENE 441

Solid-State Physics I

Professor/Instructor

Mansour Shayegan

An introduction to the properties of solids. Theory of free electrons--classical and quantum. Crystal structure and methods of determination. Electron energy levels in a crystal: weak potential and tight-binding limits. Classification of solids--metals, semiconductors, and insulators. Types of bonding and cohesion in crystals. Lattice dynamics, phonon spectra, and thermal properties of harmonic crystals. Three hours of lectures. Prerequisite: 342, or PHY 208 and 305, or equivalent.