Climate: Past, Present, and Future
Professor/Instructor
Daniel Mikhail SigmanWhich human activities are changing our climate, and does climate change constitute a major problem? We will investigate these questions through an introduction to climate processes and an exploration of climate from the distant past to today. We will also consider the impact of former and ongoing climate changes on the global environment and on humanity. Finally, we will draw on climate science to identify and evaluate possible courses of action. Intended to be accessible to students not concentrating in science or engineering. Two 80-minute lectures per week.
Climate: Past, Present, and Future
Professor/Instructor
Daniel Mikhail SigmanWhich human activities are changing our climate, and does climate change constitute a major problem? We will investigate these questions through an introduction to climate processes and an exploration of climate from the distant past to today. We will also consider the impact of former and ongoing climate changes on the global environment and on humanity. Finally, we will draw on climate science to identify and evaluate possible courses of action. Intended to be accessible to students not concentrating in science or engineering. Two 80-minute lectures per week and one three-hour laboratory per week.
Natural Disasters
Professor/Instructor
Allan Mattathias RubinAn introduction to natural (and some society-induced) hazards and the importance of public understanding of the issues related to them. Emphasis is on the geological processes that underlie the hazards, with some discussion of relevant policy issues. Principal topics: Earthquakes, volcanoes, landslides, tsunami, hurricanes, floods, meteorite impacts, global warming. Intended primarily for non-science majors. Three lectures, one three-hour laboratory.
Ocean, Atmosphere, and Climate
Professor/Instructor
Laure ResplandyThe ocean and the atmosphere control Earth's climate, and in turn climate and atmospheric changes influence the ocean. We explore what sets the temperature of Earth's atmosphere and the connections between oceanic and atmospheric circulations including exchanges of heat and carbon. We then investigate how these circulations control marine ecosystems and the cycling of chemicals in the ocean. The final part of the course focuses on human impacts, including changes in coastal environments and the acidification resulting from increased atmospheric carbon dioxide. One three-hour laboratory complements lectures.
Fundamentals of Solid Earth Science
Professor/Instructor
A quantitative introduction to Solid Earth system science, focusing on the underlying physical and chemical processes and their geological and geophysical expression. Through the course we investigate the Earth starting from its basic constituents and continue through its accretion, differentiation and evolution and discuss how these processes create and sustain habitable conditions on Earth's surface. Topics include nucleosynthesis, planetary thermodynamics, plate tectonics, seismology, geomagnetism, petrology, sedimentology and the global carbon cycle. Two field trips included.
A Guided Tour of the Solar System
Professor/Instructor
Thomas S. DuffyExamines the major bodies of our solar system, emphasizing their surface features, internal structures, and atmospheres. Topics include the origin of the solar system, habitability of planets, and the role of impacts in planetary evolution. Terrestrial and giant planets will be studied as well as satellites, comets, and asteroids. Recent discoveries from planetary missions are emphasized. This course is aimed primarily at non-science majors. Three lectures, this course is normally taught in the fall.
Life in the Universe
Professor/Instructor
Christopher F. Chyba, Edwin Lewis Turner, Michael H. HechtThis course introduces students to a new field, Astrobiology, where scientists trained in biology, chemistry, astrophysics and geology combine their skills to investigate life's origins and to seek extraterrestrial life. Topics include: the origin of life on earth, the prospects of life on Mars, Europa, Titan, Enceladues and extra-solar planets, as well as the cosmological setting for life and the prospects for SETI. AST 255 is the core course for the planets and life certificate.
Summer Course in Geologic Field Methods
Professor/Instructor
Adam C. Maloof, Laurel Pringle GoodellIntroduction to modern geologic field methods, with local and regional problems studied from a residential base camp. One option is the five week University of Houston-Yellowstone Bighorn Research Association (YBRA) course based in Red Lodge, Montana, run by the University of Houston. Alternatively, students may attend field courses offered by other institutions after obtaining approval from the Undergraduate Work Committee of the Department of Geosciences. Financial aid is available through the Geosciences Department.
Global Air Pollution
Professor/Instructor
Mark Andrew ZondloStudents will study the chemical and physical processes involved in the sources, transformation, transport, and sinks of air pollutants on local to global scales. Societal problems such as photochemical smog, particulate matter, greenhouse gases, and stratospheric ozone depletion will be investigated using fundamental concepts in chemistry, physics, and engineering. For the class project, students will select a trace gas species or family of gases and analyze recent field and remote sensing data based upon material covered in the course. Environments to be studied include very clean, remote portions of the globe to urban air quality.
Earth's Atmosphere
Professor/Instructor
Stephan Andreas FueglistalerThis class discusses fundamental aspects of Earth's climate with a focus on the fundamental atmospheric processes that render Earth "habitable," and how they may respond to the forcing originating from natural (such as volcanoes) and anthropogenic (such as emission of carbon dioxide and ozone-depleting gases) processes.
Earth History
Professor/Instructor
John Andrew HigginsThe chemical cycles of ocean and atmosphere and their interaction with Earth's biota. Topics include: the origin of the ocean's salt; the major and biologically active gases in the atmosphere and ocean; nutrients and ocean fertility; the global carbon cycle; the reactive chemistry of the atmosphere. Prerequisites: CHM 201/202 or higher; GEO 202 and/or GEO 361; or permission of the instructor. Three lectures.
Environmental Chemistry: Chemistry of the Natural Systems
Professor/Instructor
Satish Chandra Babu MyneniCovers topics including origin of elements; formation of the Earth; evolution of the atmosphere and oceans; atomic theory and chemical bonding; crystal chemistry and ionic substitution in crystals; reaction equilibria and kinetics in aqueous and biological systems; chemistry of high-temperature melts and crystallization process; and chemistry of the atmosphere, soil, marine, and riverine environments. The biogeochemistry of contaminants and their influence on the environment will also be discussed. Two 90-minute lectures. Prerequisite: one term of college chemistry or instructor's permission.
Evolution and Catastrophes
Professor/Instructor
This course introduces students to the evolution of life and mass extinctions based on a broad survey of major events in Earth history as revealed by the fossil record. Concepts and techniques of paleontology are applied to all aspects, including colonization of the oceans, invasion of land, mass extinctions and evolutionary radiations. The roles of major catastrophes in the history of life are evaluated, including meteorite impacts, volcanism, climate change, and oceanic anoxia. One three-hour lecture. Prerequisite: One 200 level or higher GEO course.
Climate Change: Impacts, Adaptation, Policy
Professor/Instructor
Michael OppenheimerAn exploration of the potential consequences of human-induced climate change and their implications for policy responses, focusing on risks to people, societies, and ecosystems. As one example: we examine the risk to coastal cities from sea level rise, and measures being planned and implemented to enable adaptation. In addition, we explore local, national, and international policy initiatives to reduce greenhouse-gas emissions. The course assumes students have a basic background in the causes of human-induced climate change and the physical science of the climate system. Two 90-minute lectures, one preceptorial
Sedimentology
Professor/Instructor
Adam C. MaloofA treatment of the physical and chemical processes that shape Earth's surface, such as solar radiation, i.e., deformation of the solid Earth, and the flow of water (vapor, liquid, and solid) under the influence of gravity. In particular, the generation, transport, and preservation of sediment in response to these processes are studied in order to better read stories of Earth history in the geologic record and to better understand processes involved in modern and ancient environmental change. Prerequisites: MAT 104, PHY 103, CHM 201, or equivalents. Two lectures, two laboratories.
Global Geophysics
Professor/Instructor
Frederik Jozef SimonsAn introduction to the fundamental principles of global geophysics. Taught on the chalkboard, in four parts, the material builds up to form a final coherent picture of (how we know) the structure and evolution of the solid Earth: gravity, magnetism, seismology, and geodynamics. The emphasis is on physical principles including the mathematical derivation and solution of the governing equations. Prerequisites: MAT 201 or 203, PHY 103/104 or PHY 105/106. Two 90-minute lectures.
Rocks
Professor/Instructor
Blair SchoeneThis course serves as an introduction to the processes that govern the distribution of different rocks and minerals in the Earth. Students learn to make observations from the microscopic to continental scale and relate these to theoretical and empirical thermodynamics. The goal is to understand the chemical, structural, and thermal influences on rock and mineral formation and how this in turn influences the plate tectonic evolution of our planet. This course has two lectures, one lab and a required Spring Break fieldtrip. Prerequisite: One introductory GEO course and GEO 378.
Structural Geology
Professor/Instructor
Blair SchoeneThe nature and origin of the deformed rocks composing the crust of Earth considered at scales ranging from atomic to continental. Tectonics and regional geology of North America. Two lectures, one lab and a required Fall Break fieldtrip.
Planetary Systems: Their Diversity and Evolution
Professor/Instructor
Examines the diversity of recently discovered planetary systems in terms of fundamental physical and chemical processes and what this diversity implies about the origin and evolution of our own planetary system. Topics include: the formation and dynamics of planets and satellites, planetary migration, the evolution of planetary interiors, surfaces and atmospheres, the occurrence of water and organics, and the habitability of planets and planetary systems. Recent discoveries from planetary missions and extrasolar planet observations are emphasized. Prerequisites: GEO 207, 255, or instructor's permission. Two 90-minute lectures.
Environmental Fluid Mechanics
Professor/Instructor
Elie R. Bou-ZeidThe course starts by introducing the conservation principles and related concepts used to describe fluids and their behavior. Mass conservation is addressed first, with a focus on its application to pollutant transport problems in environmental media. Momentum conservation, including the effects of buoyancy and earth's rotation, is then presented. Fundamentals of heat transfer are then combined with the first law of thermodynamics to understand the coupling between heat and momentum transport. We then proceed to apply these laws to study air and water flows in various environmental systems, with a focus on the atmospheric boundary layer.
Mineralogy
Professor/Instructor
Thomas S. DuffyA survey of the structure and crystal chemistry of major rock-forming minerals. Topics include: symmetry, crystallography, physical and chemical properties of minerals, mineral thermodynamics, systematic mineralogy, and techniques of modern mineralogy.
Environmental Microbiology
Professor/Instructor
Bess WardThe study of microbial biogeochemistry and microbial ecology. Beginning with the physical/chemical characteristics and constraints of microbial metabolism, we will investigate the role of bacteria in elemental cycles, in soil, sediment, and marine and freshwater communities, in bioremediation and chemical transformations. Prerequisites: One 300-level course in chemistry or biology, or instructor's permission. Two 90-minute classes, this course is normally offered in the Spring.
Environmental Aqueous Geochemistry
Professor/Instructor
Anne M. Morel-KraepielApplication of quantitative chemical principles to the study of natural waters. Includes equilibrium computations, weathering and diagenetic processes, precipitation of chemical sediments, and pollution of natural waters. Two lectures. Prerequisite: one year of college chemistry. Previous or concurrent enrollment in CHM 306 recommended.
Physics and Chemistry of Earth's Interior
Professor/Instructor
Thomas S. DuffyThe Earth is a physical system whose past and present state can be studied within the framework of physics and chemistry. Topics include current concepts of geophysics and the physics and chemistry of Earth materials; origin and evolution of the Earth; and nature of dynamic processes in its interior. One emphasis is to relate geologic processes on a macroscopic scale to the fundamental materials properties of minerals and rocks. Three lectures. Prerequisites: one year of college-level chemistry or physics (preferably both) and calculus. Offered alternately with 424.
Topics in Earth Science
Professor/Instructor
These courses cover one or more advanced topics in modern Earth science. They are offered only when there is an opportunity to present material not included in the established curriculum; the subjects vary from year to year. Three classes or a three-hour seminar.