MOL 101/STC 101

From DNA to Human Complexity

This lecture and laboratory course will acquaint non-biology majors with the theory and practice of modern molecular biology, focusing on topics of current interest to society. The course will cover basic molecular biology topics such as information storage and readout by DNA, RNA, and proteins. The course will address how recent scientific advances influence issues relevant to humanity including stem cells and CRISPR; the human microbiome and bacterial pathogens; and how the human genome can be used to understand the evolution of modern humans. Two 80-minute lectures, one three-hour laboratory.

MOL 214/CBE 214/EEB 214

Introduction to Cellular and Molecular Biology

Important concepts and elements of molecular biology, biochemistry, genetics, and cell biology are examined in an experimental context. This course fulfills the requirement for students majoring in the biological sciences and satisfies the biology requirement for entrance into medical school. Two 80-minute lectures, one three-hour laboratory.

ISC 231/CHM 231/MOL 231/PHY 231

An Integrated, Quantitative Introduction to Life Sciences I

The four-course sequence ISC 231-234 integrates introductory topics in calculus-based physics, chemistry, molecular biology, and scientific computing with Python, with an emphasis on laboratory experimentation, quantitative reasoning, and data-oriented thinking. It best suits students interested in complex problems in living organisms and prepares them for interdisciplinary research in the life sciences. The fall courses ISC 231 and 232 must be taken together. See ISC website for details on course equivalencies and recommended academic paths from ISC.

ISC 232/CHM 232/MOL 232/PHY 232

An Integrated, Quantitative Introduction to Life Sciences I

The four-course sequence ISC 231-234 integrates introductory topics in calculus-based physics, chemistry, molecular biology, and scientific computing with Python, with an emphasis on laboratory experimentation, quantitative reasoning, and data-oriented thinking. It best suits students interested in complex problems in living organisms and prepares them for interdisciplinary research in the life sciences. The fall courses ISC 231 and 232 must be taken together. See ISC website for details on course equivalencies and recommended academic paths from ISC.

MOL 320

Experimental Molecular Biology

MOL 320 is a spring semester, sophomore-level alternative to MOL350. Individuals who are interested in an early research experience that substitutes for MOL350-Laboratory in Molecular Biology can enroll in this course. The purpose of MOL320 is to prepare you to be a contributing member of a research lab and to foster creative, critical thinking and effective communication skills. While completing original research, you will employ techniques used by cell and molecular biologists and developmental geneticists. You will practice extracting pertinent information from scientific literature and will generate a final research report on your work.

EEB 327/GHP 327/MOL 327

Immune Systems: From Molecules to Populations

Why is there immunological polymorphism in animal populations? Why do immune systems work as they do? This course examines the theories of host-parasite coevolution, including optimal host resource allocation to immune defense in light of parasite counter-strategies, and assesses the empirical evidence by which these theories are tested. Students look at the evolutionary ecology of mechanisms used by immune systems to recognize and kill parasites, finding similarities across animal taxa. Finally, students will map immune mechanisms onto host phylogenies to understand the order in which different mechanisms arose over evolutionary time.

MOL 340

Molecular and Cellular Immunology

A broad survey of the field of immunology and the mammalian immune system. The cellular and molecular basis of innate and acquired immunity will be discussed in detail. The course will provide frequent examples drawn from human biology in health and disease. Prerequisite: MOL214.

MOL 342

Genetics

Basic principles of genetics illustrated with examples from prokaryote and eukaryote organisms. Classical genetic techniques as well as molecular and genomic approaches will be discussed. The evolving concept of the gene, of genetic interactions and gene networks, as well as chromosome mechanics will be the focus of the course. Selected topics will include gene regulation, cancer genetics, the human biome, imprinting, and stem cells. Two 80-minute lectures, one precept. Prerequisite: MOL 214 or permission of instructor.

MOL 345/CHM 345

Biochemistry

Fundamental concepts of biomolecular structure and function will be discussed, with an emphasis on principles of thermodynamics, binding and catalysis. A major portion of the course will focus on metabolism and its logic and regulation. Prerequisites: MOL 214 and either CHM 304 or 337.

MOL 348

Cell and Developmental Biology

The course will investigate the roles that gene regulation, cell-cell communication, cell adhesion, cell motility, signal transduction and intracellular trafficking play in the commitment, differentiation and assembly of cells into specialized tissues. The mechanisms that underlie development of multicellular organisms, from C. elegans to humans, will be examined using biochemical, genetic and cell biological approaches. In-class problem solving, group work, and active learning approaches will be used to emphasize key concepts and analyze experimental data. Two 80-minute lectures, one precept. Prerequisite: MOL 214.

MOL 350

Laboratory in Molecular Biology

MOL 350 prepares students to become contributing members of a research lab. Students will advance as creative, critical thinkers and effective communicators. While completing original research, students will employ techniques used by cell and molecular biologists, molecular geneticists, and biochemists. Students will discover how and why specific knowledge, skills and techniques are applied to the semester's research topic; will practice extracting pertinent information from scientific literature; and will generate a research report modeled on the scientific literature. One lecture, two three-hour laboratories. Prerequisite: MOL 214.

MOL 380

Modern Microbiology: Into the Microverse!

Microbes offer a rich world for exploration, a teeming universe invisible to the naked eye but thrilling in terms of diversity and scope. Human beings could not survive in their absence, yet we often think of them as the enemy. In fact, the majority are beneficial and can be harnessed for good in science and industry. This course will examine both sides: first an overview of microbial growth and function as well as specialized applications in areas such as photosynthesis, synthetic biology, quorum sensing, and CRISPR, with subsequent study of the threats to human health arising from dangerous pathogens that cause bacterial and viral disease.

MOL 415/BNG 415

Modern Biophysics and Systems Biology

At 10 nanometer scale, protein machines 'walk' on microtubule tracks. At a scale 10,000 times larger, sheets of cells self-organize to form ornate shapes that can even heal themselves after injury. This course will examine these and other complex biological systems at the molecular, cellular, and tissue scales. In parallel, we will cover the current and emerging methods that enable us to quantitatively probe and analyze biological systems. Specific topics will include structural biology from crystallography to cryo-electron microscopy, enzyme kinetics and networks, next-gen sequencing and data mining, modern microscopy and image analysis.

MOL 423/GHP 423

Molecular Basis of Cancer

We will explore the molecular events leading to the onset and progression of human cancer. We will review the central genetic and biochemical elements that make up the cell cycle, followed by a survey of the signal transduction pathways and checkpoints that regulate it. We will discuss oncogenes, tumor suppressor and mutator genes that act in these pathways and review the role of viral oncogenes and their action on cells. We will investigate the role of cancer stem cells and the interaction between tumor and the host environment. We will explore specific clinical case studies in light of the molecular events underlying different cancers.

MOL 425/GHP 425/SPI 355

Infection: Biology, Burden, Policy

This course will examine fundamental determinants of human microbe interaction at the biological and ecological levels. The focus will be on major global infectious diseases, their burden of illness and policy challenges for adequate prevention and control. Each infectious agent will be discussed in terms of its biology, mechanisms of pathogenesis, and epidemiology, as well as strategies for its control. Specific emphasis will be placed on the public health aspects of each disease. Prerequisite: MOL 101, MOL 214, or permission of instructor. One three-hour lecture.

MOL 431

Regulatory Mechanisms in Development

How do organisms ensure that genes are expressed at the right time and place as they develop from a single egg cell into a multicellular animal? In this seminar style course, we will explore some of the diverse mechanisms that control gene expression, including those involved in transcriptional regulation, epigenetic silencing, translational regulation and cell-cell signaling. By reading and critically evaluating the primary literature, we will explore many of the crucial molecular biology, cell biology and genetics techniques that have helped illuminate the gene regulatory mechanisms that are essential for animal development.

MOL 433/CBE 434/GHP 433

Biotechnology

This course will consider the principles, development, outcomes and future directions of therapeutic applications of biotechnology, with particular emphasis on the interplay between basic research and clinical experience. Topics to be discussed include production of hormones and other therapeutic proteins, gene therapy, oncolytic viruses, and stem cells. Reading will be from the primary literature. Prerequisite: MOL 214.

NEU 437/MOL 437/PSY 437

Systems Neuroscience: Computing with Populations of Neurons

Introduction to a mathematical description of how networks of neurons can represent information and compute with it. Course will survey computational modeling and data analysis methods for neuroscience. Example topics are short-term memory and decision-making, population coding, modeling behavioral and neural data, and reinforcement learning. Classes will be a mix of lectures from the professor, and presentations of research papers by the students. Two 90 minute lectures, one laboratory. Basic linear algebra, probability, ordinary differential equations, and some programming experience, or permission of the instructor.

CBE 438/BNG 438/MOL 438

Biomolecular Engineering

This course will focus on the design and engineering of biomacromolecules. After a brief review of protein and nucleic acid chemistry and structure, we will delve into rational, evolutionary, and computational methods for the design of these molecules. Specific topics to be covered include aptamers, protein and RNA-based switches and sensors, unnatural amino acids and nucleotides, enzyme engineering, and the integration of these parts via synthetic biology efforts. Two lectures.

CBE 440/GHP 450/MOL 440

Physical Basis of Human Disease

This course covers major diseases (cancer, diabetes, heart disease, infectious diseases), the physical changes that inflict morbidity and mortality, the design constraints for treatment, and emerging technologies that take into account these physical hurdles. Taking the perspective of the design constraints on the system (that is, the mass transport and biophysical limitations of the human body), the course will survey recent results from the fields of drug delivery, gene therapy, tissue engineering, and nanotechnology. Two lectures.

NEU 447/GHP 447/MOL 447

Neuroimmunology: Immune Molecules in Normal Brain Function and Neuropathology

In this course, we will explore the diverse and complex interactions between the brain and the immune system from the perspective of current, cutting-edge research papers. In particular, we will focus on the molecular mechanisms of these interactions and their role in brain development and function as well as their potential contributions to specific neurological disorders, including autism. In the process, students will learn to read, critically evaluate, and explain in presentations the content of articles from the primary literature. Prerequisites: MOL 214/215.

QCB 455/COS 455/MOL 455

Introduction to Genomics and Computational Molecular Biology

This interdisciplinary course provides a broad overview of computational and experimental approaches to decipher genomes and characterize molecular systems. We focus on methods for analyzing "omics" data, such as genome and protein sequences, gene expression, proteomics and molecular interaction networks. We cover algorithms used in computational biology, key statistical concepts (e.g., basic probability distributions, significance testing, multiple testing correction, performance evaluation), and machine learning methods which have been applied to biological problems (e.g., classification techniques, hidden Markov models, clustering).

MOL 459/GHP 459

Viruses: Strategy and Tactics

Viruses are unique parasites of living cells and may be the most abundant, highest evolved life forms on the planet. The general strategies encoded by all known viral genomes are discussed using selected viruses as examples. A part of the course is dedicated to the molecular biology (the tactics) inherent in these strategies. Another part introduces the biology of engagement of viruses with host defenses, what happens when viral infection leads to disease, vaccines and antiviral drugs, and the evolution of infectious agents and emergence of new viruses. Prerequisite: MOL 214 or permission of instructor.

MOL 460/GHP 460/STC 460

Diseases in Children: Causes, Costs, and Choices

Within a broader context of historical, social, and ethical concerns, a survey of normal childhood development and selected disorders from the perspectives of the physician and the scientist. Emphasis on the complex relationship between genetic and acquired causes of disease, medical practice, social conditions, and cultural values. The course features visits from children with some of the conditions discussed, site visits, and readings from the original medical and scientific literature. Prerequisite: MOL 214. Two 80-minute classes and an evening 80-minute precept.

MOL 498

Senior Thesis I (Year-Long)

The senior thesis (498-499) is a year-long project in which students complete a substantial piece of research and scholarship under the supervision and advisement of a Princeton faculty member. While a year-long thesis is due in the student's final semester of study, the work requires sustained investment and attention throughout the academic year.

MOL 499

Senior Thesis II (Year-Long)

The senior thesis (498-499) is a year-long project in which students complete a substantial piece of research and scholarship under the supervision and advisement of a Princeton faculty member. While a year-long thesis is due in the student's final semester of study, the work requires sustained investment and attention throughout the academic year.