COS 424 / SML 302

Fundamentals of Machine Learning

Professor/Instructor

Barbara E Engelhardt

Computers have made it possible to collect vast amounts of data from a wide variety of sources. It is not always clear, however, how to use the data, and how to extract useful information from them. This problem is faced in a tremendous range of social, economic and scientific applications. The focus will be on some of the most useful approaches to the problem of analyzing large complex data sets, exploring both theoretical foundations and practical applications. Students will gain experience analyzing several types of data, including text, images, and biological data. Two 90-minute lectures. Prereq: MAT 202 and COS 126 or equivalent.