This specially designed course targets the frontier of modern astrophysics. Subjects include the planets of our solar system; the birth, life, and death of stars; the search for extrasolar planets and extraterrestrial life; the zoo of galaxies from dwarfs to giants, from starbursts to quasars; dark matter and the large-scale structure of the universe; Einstein's special and general theory of relativity, black holes, neutron stars, and big bang cosmology. This course is designed for the non-science major and has no prerequisites past high school algebra and geometry. High school physics would be useful.
The Universe
Topics in Modern Astronomy
The solar system and planets around other stars; the structure and evolution of stars; supernovae, neutron stars, and black holes; gravitational waves; the formation and structure of galaxies; cosmology, dark matter, dark energy, and the history of the entire universe. Prerequisites: PHY 103 or 105 and MAT 103 or 104 or equivalent. Compared to AST 203, this course employs more mathematics and physics. Intended for quantitatively-oriented students.
Planets in the Universe
This is an introductory course in astronomy focusing on planets in our Solar System, and around other stars (exoplanets). The course starts with reviewing the formation, evolution and characterization of the Solar system. Following an introduction to stars, the course will then discuss the exciting new field of exoplanets; discovery methods, basic properties, earth-like planets, and extraterrestrial life. Core values of the course are quantitative analysis and hands-on experience, including telescopic observations. This SEN course is designed for the non-science major and has no prerequisites past high school algebra and geometry.
Black Holes
Black holes are amazing: so much mass is contained in such a small region of space that nothing, not even light, can escape. In this class, we will learn to understand what black holes are, and (equally importantly) what they are not (sorry, science fiction!). We will grapple with the seeming simplicity of black holes and their weirdness. We will also study how black holes are discovered and how they give rise to some of the most astonishing phenomena in the Universe. We will cover concepts at the forefront of modern astronomy and physics and highlight the power of quantitative thinking (algebra only) and the scientific method.
Space Physics Laboratory II
The Space Physics Laboratory course provides undergraduates at all levels the opportunity to participate in a laboratory developing NASA space flight instrumentation. The courses teach space physics laboratory skills, including ultrahigh vacuum, space instrument cleanroom, mechanical, electrical, and other laboratory skills, which then allow students to propose and carry out a significant group research project in the Laboratory. The class sequence comprises two semesters with Astro 250 as a prerequisite for Astro 251, a credit bearing (P/F) course.
Life in the Universe
This course introduces students to a new field, Astrobiology, where scientists trained in biology, chemistry, astrophysics and geology combine their skills to investigate life's origins and to seek extraterrestrial life. Topics include: the origin of life on earth, the prospects of life on Mars, Europa, Titan, Enceladues and extra-solar planets, as well as the cosmological setting for life and the prospects for SETI. AST 255 is the core course for the planets and life certificate.
General Relativity
This is an introductory course in general relativity for undergraduates. Topics include the early universe, black holes, cosmic strings, worm holes, and time travel. Designed for science and engineering majors. Two 90-minute lectures. Prerequisites: MAT 201 and 202, OR MAT 203 and 204. Also PHY 205 or 207. PHY 304 is recommended.
Deciphering the Universe: Research Methods in Astrophysics
How do we observe and model the universe? We discuss the wide range of observational tools available to the modern astronomer: from space-based gamma-ray telescopes, to globe-spanning radio interferometers, to optical telescopes and particle detectors. We review basic statistics, introduce techniques used to interpret modern data sets containing millions of galaxies and stars, and describe numerical methods used to model these data. The course is problem-set-based and focused on tools needed for independent research in astrophysics. PHY103/104 or 105/106, and MAT103/104 required. AST204 and programming experience are helpful but not required.
The Science of Fission and Fusion Energy
We develop the scientific ideas behind fission and fusion energy. For fission we move from elementary nuclear physics to calculations of chain reactions, understanding how both reactors and nuclear weapons work. We examine safety and waste concerns, as well as nuclear proliferation. We look at new reactor concepts. For fusion we address the physics of confining hot, ionized gases, called plasmas. We address the control of large-scale instabilities and small-scale turbulence. We examine progress and prospects, as well as challenges, for the development of economically attractive fusion power.
Planetary Systems: Their Diversity and Evolution
Examines the diversity of recently discovered planetary systems in terms of fundamental physical and chemical processes and what this diversity implies about the origin and evolution of our own planetary system. Topics include: the formation and dynamics of planets and satellites, planetary migration, the evolution of planetary interiors, surfaces and atmospheres, the occurrence of water and organics, and the habitability of planets and planetary systems. Recent discoveries from planetary missions and extrasolar planet observations are emphasized. Prerequisites: GEO 207, 255, or instructor's permission. Two 90-minute lectures.
Cosmology
Topics include the properties and nature of galaxies, quasars, clusters, superclusters, the large-scale structure of the universe, dark matter, dark energy, the formation and evolution of galaxies and other structures, microwave background radiation, and the evolution of the universe from the Big Bang to today. Two 90-minute lectures. Prerequisites: MAT 201, 202; PHY 207, 208. Designed for science and engineering majors.
Stars and Star Formation
Stars form from the interstellar medium (ISM), and the nuclear fusion that powers stars is also the main energy source in the ISM. This course discusses the structure and evolution of the ISM and stars. Topics include: physical properties and methods for studying ionized, atomic, and molecular gas in the ISM; dynamics of magnetized gas flows and turbulence; gravitational collapse and star formation; structure of stellar interiors; radiation transport; production of energy by nucleosynthesis; stellar evolution and end states; effects of stars on interstellar environment. Prerequisites: MAT 201, 202; PHY 208, 301 or permission of instructor.
Senior Thesis I (Year-Long)
The senior thesis (498-499) is a year-long project in which students complete a substantial piece of research and scholarship under the supervision and advisement of a Princeton faculty member. While a year-long thesis is due in the student's final semester of study, the work requires sustained investment and attention throughout the academic year.
Senior Thesis II (Year-Long)
The senior thesis (498-499) is a year-long project in which students complete a substantial piece of research and scholarship under the supervision and advisement of a Princeton faculty member. While a year-long thesis is due in the student's final semester of study, the work requires sustained investment and attention throughout the academic year.