The four-course sequence ISC 231-234 integrates introductory topics in calculus-based physics, chemistry, molecular biology, and scientific computing with Python, with an emphasis on laboratory experimentation, quantitative reasoning, and data-oriented thinking. It best suits students interested in complex problems in living organisms and prepares them for interdisciplinary research in the life sciences. The fall courses ISC 231 and 232 must be taken together. See ISC website for details on course equivalencies and recommended academic paths from ISC.
An Integrated, Quantitative Introduction to Life Sciences I
An Integrated, Quantitative Introduction to Life Sciences I
The four-course sequence ISC 231-234 integrates introductory topics in calculus-based physics, chemistry, molecular biology, and scientific computing with Python, with an emphasis on laboratory experimentation, quantitative reasoning, and data-oriented thinking. It best suits students interested in complex problems in living organisms and prepares them for interdisciplinary research in the life sciences. The fall courses ISC 231 and 232 must be taken together. See ISC website for details on course equivalencies and recommended academic paths from ISC.
Introduction to Genomics and Computational Molecular Biology
This interdisciplinary course provides a broad overview of computational and experimental approaches to decipher genomes and characterize molecular systems. We focus on methods for analyzing "omics" data, such as genome and protein sequences, gene expression, proteomics and molecular interaction networks. We cover algorithms used in computational biology, key statistical concepts (e.g., basic probability distributions, significance testing, multiple testing correction, performance evaluation), and machine learning methods which have been applied to biological problems (e.g., classification techniques, hidden Markov models, clustering).