AST 203

The Universe

Professor/Instructor

Anatoly Spitkovsky, Christopher F. Chyba, David N. Spergel

This specially designed course targets the frontier of modern astrophysics. Subjects include the planets of our solar system; the birth, life, and death of stars; the search for extrasolar planets and extraterrestrial life; the zoo of galaxies from dwarfs to giants, from starbursts to quasars; dark matter and the large-scale structure of the universe; Einstein's special and general theory of relativity, black holes, neutron stars, and big bang cosmology. This course is designed for the non-science major and has no prerequisites past high school algebra and geometry. High school physics would be useful.

AST 204

Topics in Modern Astronomy

Professor/Instructor

Eve Charis Ostriker

The birth and evolution of the stars; supernovae, neutron stars, and black holes; the formation, structure, and evolution of galaxies; cosmology, dark matter, dark energy, and the evolution of the universe from the Big Bang to today. Prerequisites: PHY 103 or 105 and MAT 103 or 104 or equivalent. Intended for students in the sciences.

AST 205

Planets in the Universe

Professor/Instructor

Gáspár Áron Bakos

This is an introductory course in astronomy focusing on planets in our Solar System, and around other stars (exoplanets). The course starts with reviewing the formation, evolution and characterization of the Solar system. Following an introduction to stars, the course will then discuss the exciting new field of exoplanets; discovery methods, basic properties, earth-like planets, and extraterrestrial life. Core values of the course are quantitative analysis and hands-on experience, including telescopic observations. This STN course is designed for the non-science major and has no prerequisites past high school algebra and geometry.

GEO 207 / AST 207

A Guided Tour of the Solar System

Professor/Instructor

Thomas S. Duffy

Examines the major bodies of our solar system, emphasizing their surface features, internal structures, and atmospheres. Topics include the origin of the solar system, habitability of planets, and the role of impacts in planetary evolution. Terrestrial and giant planets will be studied as well as satellites, comets, and asteroids. Recent discoveries from planetary missions are emphasized. This course is aimed primarily at non-science majors. Three lectures, this course is normally taught in the fall.

GEO 255B / AST 255 / EEB 255 / CHM 255

Life in the Universe

Professor/Instructor

Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures and field training in Yellowstone National Park over Fall break is required. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

GEO 255A / AST 255 / EEB 255 / CHM 255

Life in the Universe

Professor/Instructor

Tullis C. Onstott, Christopher F. Chyba, A. James Link

Introduces students to Astrobiology, a new field where scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include: the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90 minute lectures. Track A will be required to take a mid-term exam during Fall break. Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

AST 301 / PHY 321

General Relativity

Professor/Instructor

Jeremy J. Goodman

This is an introductory course in general relativity for undergraduates. Topics include the early universe, black holes, cosmic strings, worm holes, and time travel. Two 90-minute lectures. Prerequisites: MAT 201, 202; PHY 207, 208. Designed for science and engineering majors.

AST 303

Modeling and Observing the Universe: Research Methods in Astrophysics

Professor/Instructor

Michael Abram Strauss, Jenny E. Greene

Introduces students to the techniques that astrophysicists use to model and observe the universe. The course will prepare students in research methods that will be used in their independent work in astrophysics. The techniques covered will be useful for students concentrating in any of the natural sciences. Topics include methods of observational astronomy, instruments and telescopes, statistical modeling of data, and numerical techniques. Two 90-minute lectures. Prerequisites: PHY 103-104, or PHY 105-106, and MAT 103-104, or permission of instructor.

AST 309 / MAE 309 / PHY 309 / ENE 309

The Science of Nuclear Energy: Fission and Fusion

Professor/Instructor

Robert James Goldston

We develop the scientific ideas behind fission and fusion energy. For fission we move from elementary nuclear physics to calculations of chain reactions, understanding how both reactors and nuclear weapons work. We examine safety and waste concerns, as well as nuclear proliferation. We look at new reactor concepts. For fusion we address the physics of confining hot, ionized gases, called plasmas. We address the control of large-scale instabilities and small-scale turbulence. We examine progress and prospects, as well as challenges, for the development of economically attractive fusion power.

GEO 374 / AST 374

Planetary Systems: Their Diversity and Evolution

Professor/Instructor

Tullis C. Onstott

Examines the diversity of recently discovered planetary systems in terms of fundamental physical and chemical processes and what this diversity implies about the origin and evolution of our own planetary system. Topics include: the formation and dynamics of planets and satellites, planetary migration, the evolution of planetary interiors, surfaces and atmospheres, the occurrence of water and organics, and the habitability of planets and planetary systems. Recent discoveries from planetary missions and extrasolar planet observations are emphasized. Prerequisites: GEO 207, 255, or instructor's permission. Two 90-minute lectures.

AST 401 / PHY 401

Cosmology

Professor/Instructor

Neta A. Bahcall

Topics include the properties and nature of galaxies, quasars, clusters, superclusters, the large-scale structure of the universe, dark matter, dark energy, the formation and evolution of galaxies and other structures, microwave background radiation, and the evolution of the universe from the Big Bang to today. Two 90-minute lectures. Prerequisites: MAT 201, 202; PHY 207, 208. Designed for science and engineering majors.

AST 403 / PHY 402

Stars and Star Formation

Professor/Instructor

Bruce T. Draine, Adam S. Burrows

Stars form by the gravitational collapse of interstellar gas clouds, and as they evolve, stars return some of their gas to the interstellar medium; altering its physical state and chemical composition. This course discusses the properties and evolution of the gaseous and stellar components of a galaxy; the physics of the diffuse and dense interstellar medium, the theory and observations of star formation; stellar structure; energy production and nucleosynthesis; stellar evolution; and stellar end states. Two 90-minute lectures. Prerequisites: MAT 202; PHY 207, 208.

APC 524 / MAE 506 / AST 506

Software Engineering for Scientific Computing

Professor/Instructor

The goal of this course is to teach basic tools and principles of writing good code, in the context of scientific computing. Specific topics include an overview of relevant compiled and interpreted languages, build tools and source managers, design patterns, design of interfaces, debugging and testing, profiling and improving performance, portability, and an introduction to parallel computing in both shared memory and distributed memory environments. The focus is on writing code that is easy to maintain and share with others. Students will develop these skills through a series of programming assignments and a group project.

AST 513

Dynamics of Stellar and Planetary Systems

Professor/Instructor

Jeremy J. Goodman

Discussion of observations of stars in the solar neighborhood, the overall structure of our galaxy, and external galaxies; stellar populations and the evolution of the stellar content of galaxies; dynamical theory of the equilibrium and stability of stellar systems; and relaxation, dynamical friction, and the introduction to the Fokker-Planck equation; evolution of N-body systems.

AST 514

Structure of the Stars

Professor/Instructor

Adam S. Burrows

Theoretical and numerical analysis of the structure of stars and their evolution. Topics include a survey of the physical process important for stellar interiors (equation of state, nuclear reactions, transport phenomena); macroscopic properties of stars and their stability; evolution of single and binary stars; mass loss and accretion of matter; and accretion disks. Emphasis is given to numerical modeling of various types of stars.

AST 517

Diffuse Matter in Space

Professor/Instructor

Bruce T. Draine

Subject of course is the astrophysics of the interstellar medium: theory and observations of the gas, dust, plasma, energetic particles, magnetic field, and electromagnetic radiation in interstellar space. Emphasis will be on theory, including elements of: fluid dynamics; excitation of atoms, molecules and ions; radiative processes; radiative transfer; simple interstellar chemistry; and physical properties of dust grains.The theory will be applied to phenomena including: interstellar clouds (both diffuse atomic clouds and dense molecular clouds); HII regions; shock waves; supernova remnants; cosmic rays; interstellar dust; and star formation.

AST 522

Extragalactic Astronomy

Professor/Instructor

Michael Abram Strauss, Jenny E. Greene

A survey course covering the principal current areas of research on extragalactic objects, their physical properties, origin, evolution, and distribution in space. Topics covered include quasar physics, formation, evolution, and clustering of galaxies and the general problem of large-scale structure and motion in the universe.

APC 523 / AST 523 / MAE 507

Numerical Algorithms for Scientific Computing

Professor/Instructor

Michael Edward Mueller

A broad introduction to scientific computation using examples drawn from astrophysics. From computer science, practical topics including processor architecture, parallel systems, structured programming, and scientific visualization will be presented in tutorial style. Basic principles of numerical analysis, including sources of error, stability, and convergence of algorithms. The theory and implementation of techniques for linear and nonlinear systems of equations, ordinary and partial differential equations will be demonstrated with problems in stellar structure and evolution, stellar and galactic dynamics, and cosmology.

PHY 564 / AST 524

Physics of the Universe

Professor/Instructor

Paul Joseph Steinhardt, David N. Spergel

This course spans a wide range of advanced concepts in contemporary cosmology including inflation, the cyclic universe, dark matter and dark energy, and how they can be explored through cosmological observations of the cosmic microwave background and large scale structure. The course will be closely linked to the Princeton Center for Theoretical Physics Fall 2008 program on the Big Bang and Beyond, including weekly precept meetings with seminar speakers.

AST 541

Seminar in Theoretical Astrophysics

Professor/Instructor

Designed to stimulate students in the pursuit of research. Participants in this seminar discuss critically papers given by seminar members. Ordinarily, several staff members also participate. Often topics are drawn from published data that present unsolved puzzles of interpretation.

AST 542

Seminar in Observational Astrophysics

Professor/Instructor

Adam S. Burrows

Students will prepare and deliver presentations and lead discussion about topics of current interest in observational astrophysics and techniques.

AST 551 / MAE 525

General Plasma Physics I

Professor/Instructor

Nathaniel J. Fisch, Hong Qin

This is an introductory course to plasma physics, with sample applications in fusion, space and astrophysics, semiconductor etching, microwave generation: characterization of the plasma state, Debye shielding, plasma and cyclotron frequencies, collision rates and mean-free paths, atomic processes, adiabatic invariance, orbit theory, magnetic confinement of single-charged particles, two-fluid description, magnetohydrodynamic waves and instabilities, heat flow, diffusion, kinetic description, and Landau damping. The course may be taken by undergraduates with permission of the instructor.

AST 552

General Plasma Physics II

Professor/Instructor

Hantao Ji

Ideal magnetohydrodynamic (MDH) equilibrium, MHD energy principle, ideal and resistive MHD stability, drift-kinetic equation, collisions, classical and neoclassical transport, drift waves and low-frequency instabilities, high-frequency microinstabilities, and quasilinear theory.

AST 553

Plasma Waves and Instabilities

Professor/Instructor

Ilya Yevgenyevich Dodin

Hydrodynamic and kinetic models of nonmagnetized and magnetized plasma dispersion; basic plasma waves and their applications; basic instabilities; mechanisms of collisionless dissipation; geometrics-optics approximation, including ray tracing, field-theoretical description of continuous waves, and ponderomotive effects; conservation laws and transport equations for the wave action, energy, and momentum; mode conversion; quasilinear theory.

AST 554

Irreversible Processes in Plasmas

Professor/Instructor

Gregory Wayne Hammett

Introduction to theory of fluctuations and transport in plasma. Origins of irreversibility, Random walks, Brownian motion and diffusion, Langevin and Fokker-Planck theory. Fluctuation-dissipation theorem; test-particle superposition principle. Statistical closure problem. Derivation of kinetic equations from BBGKY hierarchy and Klimontovich formalism; properties of plasma collision operators. Classicaal transport coefficients in magnetized plasmas; Onsager symmetry. Introduction to plasma turbulence, including quasilinear theory. Applications to current problems in plasma research.